Áp dụng BĐT Cauchy-Schwarz ta có:
\(4\left(a^2+b^2+c^2\right)=\dfrac{4}{3}.\left(1+1+1\right).\left(a^2+b^2+c^2\right)\ge\dfrac{4}{3}\left(a+b+c\right)^2=\dfrac{4}{3}.\dfrac{9}{4}=3\)
Dấu "=" \(\Leftrightarrow a=b=c=\dfrac{1}{2}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(4\left(a^2+b^2+c^2\right)=\dfrac{4}{3}.\left(1+1+1\right).\left(a^2+b^2+c^2\right)\ge\dfrac{4}{3}\left(a+b+c\right)^2=\dfrac{4}{3}.\dfrac{9}{4}=3\)
Dấu "=" \(\Leftrightarrow a=b=c=\dfrac{1}{2}\)
Cho 3 số dương a, b, c thay đổi thỏa mãn: \(a^2+b^2+c^2=3\). Tìm giá trị nhỏ nhất của biểu thức: \(P=2.\left(a+b+c\right)+\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
Cho 3 số dương a, b, c thay đổi thỏa mãn: \(a^2+b^2+c^2=3\). Tìm giá trị nhỏ nhất của biểu thức: \(P=2.\left(a+b+c\right)+\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
Cho a,b,c là các số thực dương thỏa mãn a+b+c=3. Tìm giá trị nhỏ nhất của biểu thức:
\(P=\dfrac{1}{a\left(b^2+bc+c^2\right)}+\dfrac{1}{b\left(c^2+ca+a^2\right)}+\dfrac{1}{c\left(a^2+ab+b^2\right)}+\dfrac{abc}{ab+bc+ca}\)
Cho a,b,c là các số thực dương.Tìm giá trị nhỏ nhất của
\(P=\dfrac{\left(a+b+c\right)^2}{30\left(a^2+b^2+c^2\right)}+\dfrac{a^3+b^3+c^3}{4abc}-\dfrac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}\)
cho a,b>0 thỏa mãn \(\left(\sqrt{a}+2\right)\left(\sqrt{b}+2\right)=9\)
Tìm giá trị nhỏ nhất của biểu thức T=\(\dfrac{a^4}{b}+\dfrac{b^4}{a}\)
cho 3 so duong a,b,c thay đổi thỏa mãn \(a^2+b^2+c^2=3\)
Tìm giá trị nhỏ nhất của biểu thức \(P=2\left(a+b+c\right)+\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
Cho a, b, c là các số thực dương thoả mãn \(ab+bc+ac=3abc\). Tìm giá trị nhỏ nhất của biểu thức:
\(K=\dfrac{a^2}{c\left(c^2+a^2\right)}+\dfrac{b^2}{a\left(a^2+b^2\right)}+\dfrac{c^2}{b\left(b^2+c^2\right)}\)
Cho a, b, c > 0. Tìm giá trị nhỏ nhất của biểu thức: \(P=\dfrac{ab+bc+ca}{a^2+b^2+c^2}+\dfrac{\left(a+b+c\right)^3}{abc}\)
xét ba số thực a,b,c thỏa mãn 0 ≤ a,b,c ≤ 2 và a+b+c = 3. Tìm giá trị nhỏ nhất của biểu thức : P = a3+ b3+ c3 + \(\dfrac{\left(ab+bc+ca\right)^3+8}{ab+bc+ca}\)