Cho a,b,c là các số không âm thỏa \(a^2+b^2+c^2=1\).Cmr
\(1\le\dfrac{a}{1+bc}+\dfrac{b}{1+ca}+\dfrac{c}{1+ab}\le2\)
Cho a, b, c là các số thực dương thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=1\) . Cmr
\(\sqrt{\dfrac{ab}{a+b+2c}}+\sqrt{\dfrac{bc}{c+b+2a}}+\sqrt{\dfrac{ca}{a+c+2b}}\le\dfrac{1}{2}\)
Cho a,b,c>0 thỏa mãn\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=1\). CMR
\(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{a+b}\ge\dfrac{1}{2}\)
Fix : Cho a,b,c thực dương thỏa \(a^2+b^2+c^2=1\).Cmr
\(1\le\dfrac{a}{1+bc}+\dfrac{b}{1+ca}+\dfrac{c}{1+ab}\le\dfrac{3\sqrt{3}}{4}\)
Cho a,b,c là các số thực dương thỏa mãn abc=1.CMR:
\(\dfrac{1}{ab+a+2}+\dfrac{1}{bc+b+2}+\dfrac{1}{ca+c+2}\le\dfrac{3}{4}\)
CHo a+b+c=1 (a,b,c>0) CMR:
S=\(\dfrac{bc}{\sqrt{a+bc}}+\dfrac{ac}{\sqrt{b+ac}}+\dfrac{ab}{\sqrt{c+ab}}\le\dfrac{1}{2}\)
Bất đẳng thức Bunhiacopxki
B1: Cho a,b,c thỏa mãn: a+b+c=1. CMR: \(a^2+b^2+c^2\ge\dfrac{1}{3}\)
B2: Cho a,b,c dương thỏa mãn: \(a^2+4b^2+9c^2=2015\). CMR: \(a+b+c\le\dfrac{\sqrt{14}}{6}\)
B3: Cho a,b dương thỏa mãn: \(a^2+b^2=1\).CMR: \(a\sqrt{1+a}+b\sqrt{1+b}\le\sqrt{2+\sqrt{2}}\)
Cho a,b,c > 0 thỏa a+b+c=1. CM: \(\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\ge30\)
Cho a,b,c >0 thỏa a+b+c=3.Chứng minh rằng
\(\dfrac{a}{ab+1}+\dfrac{b}{bc+1}+\dfrac{c}{ca+1}\ge\dfrac{3}{2}\)