ta có: \(a^2\)+\(b^2\)+\(c^2\)\(\ge\)ab+bc+ca
<=> \(a^2\)+\(b^2\)+\(c^2\)-ab-bc-ca\(\ge\)0
<=>2\(a^2\)+2\(b^2\)+2\(c^2\)-2ab-2bc-2ca\(\ge\)0
<=> (\(a^2\)-2ab+\(b^2\))+(\(b^2\)-2bc+\(c^2\))+(\(c^2\)-2ca+\(a^2\))\(\ge\)0
<=> \(\left(a-b\right)^2\)+\(\left(b-c\right)^2\)+\(\left(c-a\right)^2\)\(\ge\)0 (luôn đúng)
dấu = xảy ra khi a =b=c
a−b<c<=>a2+b2−2ab<c2" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">
b−c<a<=>b2+c2−2bc<a2" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">
a−c<b<=>a2+c2−2ac<b2" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">
2(a2+b2+c2)−2(ab+bc+ac)<a2+b2+c2<=>2(ab+ac+bc)>a2+b2+c2" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">
(đpcm)Bài này khó lắm tớ mới làm có vế trái thôi
\(a^{^{ }2}\)+\(b^{^{ }2}\)+\(c^{^{ }2}\)\(\le\)2(ab+bc+ca)
Vì a;b;c là 3 cạnh của 1 tam giác nên theo bất đẳng thức tam giác ta có
a\(\le\) b+c => a.a \(\le\)a.(b+c)=> \(a^{^{ }2}\)\(\le\)ab+ac(1)
b\(\le\)a+c => b.b\(\le\)b(a+c)=> \(b^{^{ }2}\)\(\le\)ab+ bc(2)
c\(\le\)a+b=> c.c\(\le\)c.(a+b) => \(c^{^{ }2}\)\(\le\)ac+bc(3)
cộng vế với vế của (1); (2) và (3) ta có:
\(a^{^{ }2}\)+\(b^{^{ }2}\)+\(c^{^{ }2}\)\(\le\) ab+ ac+ab+bc+ac+bc
vậy \(a^{^{ }2}\)+\(b^{^{ }2}\)+\(c^{^{ }2}\)\(\le\)2.(ab +bc+ca)