cho a2 + b2 ≤ 1. Chứng minh rằng ( ac + bd - 1 )2 ≥ ( a2 + b2 - 1 )(c2 + d2 -1 )
Cho a, b, c, d, q, p thỏa mãn p2 + q2 - a2 - b2 - c2 - d2 > 0. Chứng minh rằng : ( p2 - a2 - b2 )( q2 - c2 - d2 ) ≤ ( pq- ac - bd )2
Cho 3 số dương a,b,c thỏa mãn a2 + b2 + c2 = 1
CMR : \(\dfrac{a}{b^2+c^2}+\dfrac{b}{a^2+c^2}+\dfrac{c}{a^2+b^2}\) ≥ \(\dfrac{3\sqrt{3}}{2}\)
Chứng minh bằng phản chứng:
a) a, b, c thuộc ( 0; 1). CMR có ít nhất 1 bất đẳng thức sai:
a(1- b) > 1/4 ; b( 1- c) > 1/4 ; c(1- a) > 1/4
b) Cho: x^2 + x(a1) +b1=0 ;
x^2 + x(a2) + b2=0 . Thỏa mãn (a1)(a2) lớn hơn hoặc bằng ( b1 + b2)
b CMR: ít nhất 1 phương trình có nghiệm.
chứng minh rằng a,b,c là độ dài 3 cạnh của 1 tam giác thì
(b+c-a)(c+a-b)(a+b-c)\(\le\)abc
Bất đẳng thức Bunhiacopxki
B1: Cho a,b,c thỏa mãn: a+b+c=1. CMR: \(a^2+b^2+c^2\ge\dfrac{1}{3}\)
B2: Cho a,b,c dương thỏa mãn: \(a^2+4b^2+9c^2=2015\). CMR: \(a+b+c\le\dfrac{\sqrt{14}}{6}\)
B3: Cho a,b dương thỏa mãn: \(a^2+b^2=1\).CMR: \(a\sqrt{1+a}+b\sqrt{1+b}\le\sqrt{2+\sqrt{2}}\)
Cho a, b, c là độ dài các cạnh của tam giác, S là diện tích tam giác. Chứng minh:
\(S=\dfrac{1}{4}\sqrt{a^4+b^4+c^4}\)
Sử dingj phương pháp biến đổi tương đương
Cho a, b, c là độ dài các cạnh của tam giác, S là diện tích tam giác. Chứng minh:
\(S\ge\dfrac{1}{4}\sqrt{a^4+b^4+c^4}\)
Sử dụng phương pháp biến đổi tương đương
Cho a, b, c là độ dài các cạnh của tam giác, S là diện tích tam giác. Chứng minh:
\(S\ge\dfrac{1}{4}\sqrt{a^2b^2+b^2c^2+c^2a^2}\)
Sử dụng phương pháp biến đổi tương đương