Ta có:
b+c>a(bđt tam giác)
b+c-a>0 (1)
Chứng minh:
\(\dfrac{a}{b+c}< \dfrac{2a}{a+b+c}\)
\(\dfrac{1}{b+c}< \dfrac{2}{a+b+c}\)
\(b+c-a>0\) (2)
Từ (1) và (2) suy ra \(\dfrac{a}{b+c}< \dfrac{2a}{a+b+c}\)
Chứng minh tương tự
\(\dfrac{b}{a+c}< \dfrac{2b}{a+b+c}\)
\(\dfrac{c}{a+c}< \dfrac{2c}{a+b+c}\)
\(\Rightarrow\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}< \dfrac{2a+2b+2c}{a+b+c}\)
\(\Leftrightarrow\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}< 2\)