Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Thị Thế Ngọc

Cho a,b,c là các số thực thỏa mãn:\(a^2+ab+b^2=3\).Tìm GTNN,GTLN P=\(a^2-ab-3b^2\)

Nguyễn Việt Lâm
19 tháng 6 2019 lúc 18:40

\(\frac{P}{3}=\frac{a^2-ab-3b^2}{3}=\frac{a^2-ab-3b^2}{a^2+ab+b^2}\)

Nếu \(b=0\Rightarrow P=3\)

Nếu \(b\ne0\) chia cả tử và mẫu cho \(b^2\) ta được: \(\frac{P}{3}=\frac{\left(\frac{a}{b}\right)^2-\frac{a}{b}-3}{\left(\frac{a}{b}\right)^2+\frac{a}{b}+1}\)

Đặt \(\frac{a}{b}=x\Rightarrow\frac{P}{3}=\frac{x^2-x-3}{x^2+x+1}\)

\(\Leftrightarrow Px^2+Px+P=3x^2-3x-9\)

\(\Leftrightarrow\left(P-3\right)x^2+\left(P+3\right)x+P+9=0\)

Với \(P\ne3\) ta có

\(\Delta=\left(P+3\right)^2-4\left(P-3\right)\left(P+9\right)\ge0\)

\(\Leftrightarrow-3P^2-30P+117\ge0\)

\(\Rightarrow-13\le P\le3\)

\(\Rightarrow P_{max}=3\) khi \(b=0\)

\(P_{min}=-13\) khi \(x=-\frac{5}{16}\Rightarrow a=-\frac{5}{16}b\)


Các câu hỏi tương tự
Lê Thị Thế Ngọc
Xem chi tiết
Lê Thị Thế Ngọc
Xem chi tiết
Lê Thị Thế Ngọc
Xem chi tiết
Lê Thị Thế Ngọc
Xem chi tiết
Lê Thị Thế Ngọc
Xem chi tiết
nguyen ha giang
Xem chi tiết
Lê Thị Thế Ngọc
Xem chi tiết
Lê Thị Thế Ngọc
Xem chi tiết
Lê Thị Thế Ngọc
Xem chi tiết