I : Cho a b c là các số hữu tỉ khác 0
thỏa mãn a=b+c
CMR: \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\)là các số hữu tỉ
help me !!!
Cho a, b, c là các số thực dương thỏa mãn: \(a+b+c=3\) và \(a^2+b^2+c^2=5\).
\(A=(\frac{a}{a^2+2}+\frac{b}{b^2+2}+\frac{c}{c^2+2})\sqrt{(a^2+2)(b^2+2)(c^2+2)}\)
Cho a,b,c là các số thực thỏa mãn:a≥4;b≥;c≥6 và \(a^2+b^2+c^2=90\).Tìm GTNN P=a+b+c
Cho các số a,b, c,x,y,z là các số dương thoả mãn ax + by + cz = xyz
Chứng minh rằng : \(x+y+z>\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)
Cho a, b, c là các số lớn hơn 1. Chứng minh:
\(\frac{a^2}{b-1}+\frac{b^2}{c-1}+\frac{c^2}{a-1}\ge12\)
1. Cho a,b,c,d là các số thực thoả mãn: \(b+d\ne0\) và \(\frac{ac}{b+d}\ge2\).
Chứng minh rằng phương trình \(\left(x^2+ax+\right)\left(x^2+cx+d\right)=0\) (x là ẩn)
luôn có nghiệm.
2.\(\sqrt{5x^2+14x+9}-\sqrt{x^2-x-20}=5\sqrt{x+1}\)
1. Chứng minh rằng \(5^n\left(5^n+1\right)-6^n\left(2^n+3^n\right)⋮91\) với mọi n thuộc N*.
2. Chứng minh rằng với a, b, c, d là các số nguyên lẻ và \(a^5+b^5+c^5+d^5⋮240\) thì \(a+b+c+d⋮240\)
Cho a,b,c là các số thực dương thỏa mãn:\(a^2+b^2+c^2=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\).
1,Tính a+b+c ,biết rằng ab+bc+ca=9
2,CMR nếu c≥a, c≥b thì c≥a+b
Cho a,b là các số thực thỏa mãn a2+b2=4. Tìm GTLN của biểu thức
P=a4+b4+4ab