Chứng minh rằng nếu \(\frac{ab+ac}{2}=\frac{bc+ba}{4}=\frac{ca+cb}{4}\) và a, b, c ≠ 0 thì \(\frac{a}{3}=\frac{b}{5}=\frac{c}{15}\)
cho a,b,c là các số khác 0 thoả mãn \(\dfrac{ab+ac}{1}=\dfrac{bc+ba}{3}=\dfrac{ca+cb}{4}\) thì \(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{15}\)
cho 3 số dương 0 <hoặc bằng a<hoặc bằng b<hoặc bằng c<hoặc bằng 1 chứng minh rằng a/bc+1+b/ac+1+c/ab+1<hoặc bằng 2
Bài 1: Tam giác ABC có AB = 24cm, AC = 3, BC=40cm. Trên cạnh AC lấy điểm M
sao cho AM = 7cm. Chứng minh rằng:
a) Tam giác ABC là tam giác vuông;
b) ∠AMB =2∠C
Bài 2: Cho tam giác ABC có AB = AC = 8,5cm, BC = 15cm. Kẻ AH vuông góc với
BC (H ∈ BC)
a) Chứng minh HB=HC
b) Tính độ dài AH
c) Kẻ HE ⊥ AB (E ∈ AB), HK ⊥ AC (K ∈ AC) . So sánh độ dài HE và HK.
Bài 3: Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC. Tia phân giác của
góc HAB cắt BC tại E, tia phân giác của góc HAC cắt BC tại D. Chứng minh
rằng AB+AC=BC+DE.
Bài 4: Cho tam giác ABC có ba góc nhọn, kẻ BD vuông góc với AC (D thuộc AC) và
CE vuông góc với AB (E thuộc AB). Trên tia đối của tia BD lấy điểm F sao
cho BF=AC. Trên tia đối của tia CE lấy điểm G sao cho CG=AB.
a) Chứng minh ∠ABF = ∠ACG
b) Chứng minh AF = AG và AF ⊥ AG .
Cho a,b,c là các số dương thỏa mãn:
a+ab+b=3 ; b+bc+c=5 và c+ac+a=15. Tính M=a+b+c
Viết Giả thiết - Kết luận cho các bài toán này dùm mik đi
Bài 1. Cho tam giác ABC cân tại A, có A=100⁰.Lấy điểm M thuộc cạnh AB, điểm N thuộc cạnh AC sao cho AM = AN. Chứng minh rằng:
a) MN//BC
b) Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD, kẻ CK vuông góc với AE. Chứng minh: BH = CK
c)△ABH =△ACK
Bài 2:Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC (H BC).
a) Chứng minh: HB = HC.
b) Kẻ HD丄AB (D ∈ AB), HE丄AC (E∈ AC). Chứng minh tam giác ADE cân.
c) Chứng minh DE // BC
Bài 3 .Cho ΔABC vuông tại A . Tia phân giác của góc C cắt AB tại I. Kẻ IM vuông góc với BC tại M, hai đường thẳng CA và MI cắt nhau tại N.
a. Chứng minh:ΔACI =ΔMCI.
b. Chứng minh: NIB là tam giác cân.
Bài 4. Cho tam giác ABC cân tại A. Kẻ AH⏊BC , H∈BC
a) Chứng minh △ABH = △ ACH
b) Kẻ HM丄AB, M∈AB ; HN丄AC, N∈AC . Chứng minh MB = NC
c) Gọi O là giao điểm AH và MN. Chứng minh MN//BC
Bài 5 Cho hai đoạn thẳng MN và PQ cắt nhau tại trung điểm O của mỗi đoạn.
Chứng minh rằng : a, MQO = NPO ; b, MQ ∥ NP
Bài 6 Cho tam giác ABC vuông tại A có AB = AC. Gọi K là trung điểm của BC
a. Chứng minh AKB = AKC
b. Chứng minh AK vuông góc BC
Bài 7 Cho tam giác ABC cân tại A và có góc A=50⁰
1. Tính góc B và góc C
2. Lấy D ∈ AB, E ∈ AC sao cho AD = AE. Chứng minh ΔADE cân
3. Chứng minh DE // BC.
Bài 8 :Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.
1. Chứng minh : DB = EC.
2. Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC là tam giác cân.
1. Cho đoạn thẳng BC. Gọi I là trung điểm của BC. Trên đường trung trực của BC lấy điểm A (A khác I)
1. Chứng minh AIB = AIC.
2. Kẻ IH vuông góc với AB, kẻ IK vuông góc với AC.
a) Chứng minh AHK cân.
b) Chứng minh HK//BC.
2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà AD = AB, trên tia đối của tia AC lấy điểm E mà AE =
AC. Gọi M; N lần lượt là các điểm trên BC và ED sao cho CM = EN. Chứng minh ba điểm M; A; N thẳng hàng.
3. Tính số đo x của góc trong các hình sau đây:
Hình 2Hình 1
50
x
y
x70
100
BC
A
NP
M
4. Cho tam giác ABC vuông tại A có AB = 3cm , AC = 4cm
a) Tính độ dài cạnh BC.
b) Trên tia đối của tia AC lấy D sao cho AD = AB. Tam giác ABD có dạng đặc biệt nào? Vì sao?
c) Lấy trên tia đối của tia AB điểm E sao cho AE = AC.
Chứng minh DE = BC.
5. Tam giác có độ dài ba cạnh tỉ lệ với 3 : 4 : 5. Chu vi tam giác là 60cm. Tính độ dài ba cạnh của
tam giác.
6. Cho tam giác ABC cân tại A, kẻ BD vuông góc với AC và kẻ CE vuông góc với AB. BD và CE cắt nhau tại I.
a) Chứng minh CEBBDC .
b) So sánh IBE và ICD
c) Đường thẳng AI cắt BC tại H. Chứng minh AI BC tại H.
.
7.
Hình 4Hình 3Hình 2Hình 1
20
xx
x
3590
x
3050
x
2872
BC
A
EF
D
IH
G
KL
J
Hình nào trong các hình ở trên có số đo x là 80 0 ? (đánh dấu X vào ô vuông)
Hình 1 Hình 3
Hình 1 và hình 2 Hình 1, hình 2 và hình 4
8.
1. Vẽ một tam giác vuông ABC có góc A = 90 0 , AC = 4cm, góc C = 60 0 .
2. Trên tia đối của tia AC lấy điểm D sao cho AD = AC.
a) Chứng minh ABCABD
b) Tam giác BCD có dạng đặc biệt nào? Vì sao?
c) Tính độ dài các đoạn thẳng BC, AB.
2
9. Cho góc nhọn xOy. Gọi I là một điểm thuộc tia phân giác của góc xOy. Kẻ IA vuông góc với Ox (điểm A
thuộc tia Ox) và IB vuông góc với Oy (điểm B thuộc tia Oy)
a) Chứng minh IA = IB.
b) Cho biết OI = 10cm, AI = 6cm. Tính OA.
c) Gọi K là giao điểm của BI và Ox và M là giao điểm của AI với Oy. So sánh AK và BM?
d) Gọi C là giao điểm của OI và MK. Chứng minh OC vuông góc với MK.
10. Cho tam giác cân DEF (DE = DF). Trên cạnh EF lấy hai điểm I, K sao cho EI = KF. Chứng minh DI = DK.
11. Cho tam giác ABC có CA = CB = 10cm, AB = 12cm. Kẻ CI AB (IAB).
Kẻ IH AC (H AC), IK BC (K BC).
a) Chứng minh rằng IA = IB
b) Chứng minh rằng IH = IK
c) Tính độ dài IC
d) HK // AB
12. Cho tam giác ABC cân tại A . Trên tia đối của BC lấy điểm M, trên tia đối của CB lấy điểm N sao cho BM =
CN.
a) Chứng minh : ABM = ACN
b) Kẻ BH AM ; CK AN ( H
AM; K
AN ) . Chứng minh : AH = AK
c) Gọi O là giao điểm của HB và KC . Tam giác OBC là tam giác gì ? Vì sao?
13. Cho tam giác ABC, kẻ BE AC và CF AB. Biết BE = CF = 8cm. độ dài các đoạn thẳng BF và BC tỉ lệ
với 3 và 5.
a) Chứng minh tam giác ABC là tam giác cân
b) Tính độ dài cạnh đáy BC
c) BE và CF cắt nhao tại O. Nối OA và EF.
Chứng minh đường thẳng AO là trung trực của đoạn thẳng EF.
14. Tam giác có độ dài ba cạnh sau có phải là
tam giác vuông không? Vì sao?
a) 3cm, 4cm, 5cm;
b) 4cm, 5cm, 6cm.
15. Cho tam giác ABC có số đo các góc A, B, C tỉ lệ với 3; 2; 1.
a) Tính số đo các góc của tam giác ABC.
b) Lấy D là trung điểm của AC, kẻ DM AC (M BC). Chứng minh rằng tam giác ABM là tam giác
đều.
Bài 3: Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC.
a) Chứng minh rằng tam giác AMB = tam giác AMC
b) Chứng minh rằng AM là tia phân giác của góc BAC ?
c) đường thẳng đi qua B vuông góc với BA cắt đường thẳng AM tại I.
Chứng minh rằng : CI vuông góc CA
Bμi 4: Tam giác ABC có phải là tam giác vuông hay không nếu các cạnh AB;
AC; BC tỉ lệ với
a) 9; 12 và 15 b) 3; 2,4 và 1,8
c) 4; 6 và 7 d) 4 ; 4 căn bật 2 và 4
BT1 Trong các độ dài sau đây , ba số đo nào là số đo của cạnh tam giác ấy
a, 9 cm;15 cm;12 cm
b, 11 cm;5 cm;9 cm
c, 2 cm; căn của 8m;2 cm
BT2 Cho tam giác ABC vuông tại A . Biết AB=6cm;BC=10cm.Gọi M là trung điểm của AC .Tính AM
BT3 Cho tam giác ABC có góc A=90.Gọi M là trung điểm của AC . Chứng minh rằng BM^2=BC^2-3/4 AC^2
BT4 Cho tam giác ABC có các góc B và C nhọn .Kẻ AH vuông với BC (H thuộc BC),biết AC=15cm;AB=5cm;HC=9cm.Tính độ dài cạnh AB
BT5 Cho hai đoạn thẳng AC và BD vuông góc với nhau và cắt nhau tại O . Chứng minh rằng : AB^2+CD^2 = AD^2+BC^2