\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
\(\frac{x^2}{a^2+b^2+c^2}-\frac{x^2}{a^2}+\frac{y^2}{a^2+b^2+c^2}-\frac{y^2}{b^2}\)\(+\frac{z^2}{a^2+b^2+c^2}-\frac{z^2}{c^2}=0\)
\(x^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{a^2}\right)\)\(+y^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{b^2}\right)+z^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{c^2}\right)\)\(=0\)
Vì \(\frac{1}{a^2+b^2+c^2}-\frac{1}{a^2}\ne0,\frac{1}{a^2+b^2+c^2}-\frac{1}{b^2}\ne0\)\(,\frac{1}{a^2+b^2+c^2}-\frac{1}{c^2}\ne0\) và \(a,b,c\ne0\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=0\\y^2=0\\z^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\y=0\\z=0\end{matrix}\right.\)\(\Rightarrow T=0\)