Phân thức đại số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
áddsa

cho x,y,z khác nhau và khác 0 thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

CM : \(\frac{1}{x^2+2yz}+\frac{1}{y^2+2zx}+\frac{1}{z^2+2xy}=0\)

Nguyễn Thị Ngọc Thơ
6 tháng 3 2019 lúc 22:04

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Leftrightarrow\frac{xy+yz+zx}{xyz}=0\) \(\Rightarrow xy+yz+zx=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy=-\left(yz+zx\right)\\yz=-\left(xy+zx\right)\\zx=-\left(xy+yz\right)\end{matrix}\right.\)

Thay vào ta có:

\(\frac{1}{x^2+2yz}=\frac{1}{x^2+yz+yz}=\frac{1}{x^2-xy+yz-zx}=\frac{1}{\left(x-z\right)\left(x-y\right)}\)

CMTT:

\(PT\Leftrightarrow\frac{1}{\left(x-y\right)\left(x-z\right)}+\frac{1}{\left(x-y\right)\left(z-y\right)}+\frac{1}{\left(z-y\right)\left(z-x\right)}\)

\(\Leftrightarrow\frac{\left(z-y\right)+\left(x-z\right)-\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(z-y\right)}=0\left(đpcm\right)\)


Các câu hỏi tương tự
Nguyễn Thị Thanh Mai
Xem chi tiết
Patepippip
Xem chi tiết
Nguyễn Bùi Đại Hiệp
Xem chi tiết
Nguyễn Bùi Đại Hiệp
Xem chi tiết
Đặng Trung Hiếu
Xem chi tiết
Hoàng Bảo Ngọc
Xem chi tiết
Thanh Thanh
Xem chi tiết
Nguyễn Vân Giang
Xem chi tiết
Wanna One
Xem chi tiết