Cho đa thức \(P\left(x\right)=ax^2+bx+c\). Trong đó \(a,b,c\) là các hằng số thỏa mãn \(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3}\) và \(a\ne0\). Tính \(\dfrac{P\left(-2\right)-3P\left(1\right)}{a}\).
1.Rút gọn các đơn thức sau và chỉ bra hệ số và phần biến
a)\(-2x^2y.\left(-xy^2\right)\)
b)\(\frac{1}{4}\left(x^2y^3\right)^2.\left(-2xy\right)\)
2.Tính các tích sau rồi tìm bậc của công thức thu được
a)\(\left(-7x^2yz\right).\frac{3}{7}xy^2z^3\)
b)\(-\frac{2}{3}xy^2z.\left(-3x^2y\right)^2\)
c)\(x^2yz.\left(2xy\right)^2z\)
d)\(-\frac{1}{3}x^2y.\left(-x^3yz\right)\)
3.Thực hiện phép nhân các đơn thức sau rồi tìm bậc đơn thức nhận được
a)\(4x^2y.\left(-5xy^4\right)\)
b)\(\frac{-1}{2}x^3y.\left(-xy\right)\)
c)\(\left(-2x^3y\right).3xy^4\)
d)\(\frac{-4}{5}x^3y.\left(-xy\right)\)
e)\(\frac{2}{3}xyz.\left(-6x^2y\right).\left(-xy^2z\right)\)
f)\(\left(-2x^2y\right).\left(\frac{-1}{2}\right)^2.\left(x^2y^3\right)^2\)
Cho hàm số \(f\left(x\right)=ax^3+bx^2+cx+d\) thỏa mãn \(f\left(-1\right)=2,f\left(0\right)=1,f\left(1\right)=7,f\left(\dfrac{1}{2}\right)=3\). Xác định giá trị \(a,b,c,d\).
➤ Bài 1 : Cho đa thức :
\(f\left(x\right)=x\left(\frac{x^{2013}}{3}-\frac{x^{2014}}{5}+\frac{x^{2015}}{7}+\frac{x^2}{2}\right)-\left(\frac{x^{2014}}{3}-\frac{x^{2015}}{5}+\frac{x^{2016}}{7}+\frac{x^2}{2}\right)\).
a/ Tìm bậc của đa thức f(x).
b/ Chứng minh : Đa thức f(x) luôn nhận giá trị nguyên với \(\forall x\)\(\in \mathbb{Z}\)
➤ Bài 2 : Cho 3 số ɑ, b, c thoả mãn :
\(\frac{a}{2016}=\frac{b}{2017}=\frac{c}{2018}\)
Tính \(M=4\left(a-b\right)\left(b-c\right)\left(c-a\right)^2\).
Tìm GTLN:
a. A=\(\frac{2020}{\left(x+3\right)^2+\left|y+1\right|+5}\)
b. B= -x2 - 2x +8
c. C= \(\frac{x^2-2x+2020}{x^2-2x+2020}\)
Tìm giá trị nhỏ nhất
a) \(A=3.\)\(\left|1-2x\right|\)-5
b) \(B=\left(2x^2+1\right)^4-3\)
c) \(C=\left|x-\frac{1}{2}\right|+(y+2)^2+11\)
Tìm giá trị lớn nhất
a) \(C=-\left|2-3x\right|+\frac{1}{2}\)
b) \(D=-3-\left|2x+4\right|\)
Cho a,b,c khác 0 thỏa mãn b2=\(a\times c\)
\(\dfrac{a}{bc}=\dfrac{\left(2010\times a+2011\times6\right)^2}{\left(2010\times b+2011\times c\right)^2}\)
Câu 1: Xác định hệ số a, b của đa thức \(f\left(x\right)=ax+b\) biết \(f\left(1\right)=1\) và \(f\left(-1\right)=-5\).
Câu 2: Cho hai đa thức: \(A\left(x\right)=x^5+2x^2-\dfrac{1}{2}x-3\)
\(B\left(x\right)=-x^5-3x^2+\dfrac{1}{2}x+1\)
CMR \(M\left(x\right)=A\left(x\right)+B\left(x\right)\)vô nghiệm.