Đặt T là vế trái của BĐT, nhân vào biến đổi ta được
\(T=2+\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)-3\)
\(T\ge2+\dfrac{2\left(a+b+c\right)}{\sqrt[3]{abc}}+\dfrac{a+b+c}{\sqrt[3]{abc}}-3\)(Sử dụng AM-GM rồi tách)
\(T\ge2+\dfrac{2\left(a+b+c\right)}{\sqrt[3]{abc}}+\dfrac{3\sqrt[3]{abc}}{\sqrt[3]{abc}}-3\)
\(T\ge2\left(1+\dfrac{a+b+c}{\sqrt[3]{abc}}\right)\)(đpcm)
Đẳng thức xảy ra khi a=b=c