Áp dụng BĐT Cauchy-Schwarz ta có:
\(A^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)\)
\(\le\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\left(1+1+1\right)\)
\(=3\cdot2\left(a+b+c\right)=6\cdot4=24\)
\(\Rightarrow A^2\le24\Rightarrow A\le\sqrt{24}\)
Đẳng thức xảy ra khi \(a=b=c=\dfrac{4}{3}\)