Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=\frac{a^2}{ab}+\frac{b^2}{bc}+\frac{c^2}{ca}\geq \frac{(a+b+c)^2}{ab+bc+ac}(*)\)
Giờ ta sẽ đi CM: \(\frac{(a+b+c)^2}{ab+bc+ac}\geq \frac{9}{a+b+c}(**)\)
Đặt \(a+b+c=t(t>0)\Rightarrow (a+b+c)^2=t^2\)
\(\Leftrightarrow 3+2(ab+bc+ac)=t^2\Rightarrow ab+bc+ac=\frac{t^2-3}{2}\)
Khi đó:
\((**)\Leftrightarrow (a+b+c)^3\geq 9(ab+bc+ac)\)
\(\Leftrightarrow t^3\geq 9\left(\frac{t^2-3}{2}\right)\)
\(\Leftrightarrow 2t^3-9t^2+27\geq 0\)
\(\Leftrightarrow (2t+3)(t-3)^2\geq 0\) (luôn đúng với $t>0$)
Do đó \((**)\) đúng.
Từ \((*);(**)\Rightarrow \frac{a}{b}+\frac{b}{c}+\frac{c}{a}\geq \frac{9}{a+b+c}\) (đpcm)
Dấu bằng xảy ra khi \(a=b=1\)