\(P=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\)(BĐT Svarxơ)\(\ge\frac{\frac{1}{9}\left(a+b+c\right)^4}{ab+bc+ca}\)(BĐT Bunhiacoxki)
Có: \(3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2\)
\(\Leftrightarrow ab+bc+ca\le3\)
\(\Rightarrow P\ge\frac{\frac{1}{9}\left(a+b+c\right)^4}{3}\)\(=\frac{1}{27}\left(a+b+c\right)^4\)
Dễ thấy \(P\ge3\)
Cần C/m \(\left(a+b+c\right)^4\ge81\)
\(\Rightarrow a+b+c\ge3\)
mà\(ab+bc+ca\le3\) kết hợp với gt nên ta có điều đó LĐ.
Vậy Pmin=3\(\Leftrightarrow a=b=c=1\)
Ta luôn có: \(ab+ac+bc\le\frac{\left(a+b+c\right)^2}{3}\)
\(\Rightarrow a+b+c+\frac{\left(a+b+c\right)^2}{3}\ge6\)
\(\Rightarrow\left(a+b+c\right)^2+3\left(a+b+c\right)-18\ge0\)
\(\Rightarrow\left(a+b+c-3\right)\left(a+b+c+6\right)\ge0\)
\(\Rightarrow a+b+c-3\ge0\) (do \(a+b+c+6>0\))
\(\Rightarrow a+b+c\ge3\)
\(P=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+ac+bc}\ge\frac{\left(\frac{\left(a+b+c\right)^2}{3}\right)^2}{\frac{\left(a+b+c\right)^2}{3}}=\frac{\left(a+b+c\right)^2}{3}\ge3\)
\(\Rightarrow P_{min}=3\) khi \(a=b=c=1\)