\(a^2+1+b^2+1+c^2+1\ge2a+2b+2c\)
\(2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
Cộng vế với vế:
\(3\left(a^2+b^2+c^2\right)+3\ge2\left(a+b+c+ab+bc+ca\right)\)
\(\Rightarrow a^2+b^2+c^2\ge3\)
Ta có:
\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ca}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge a^2+b^2+c^2\ge3\)
Dấu "=" xảy ra khi \(a=b=c=1\)