Cho a,b,c>0 thỏa mãn : \(ab+bc+ca=0\)
C/m: \(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\ge3+\sqrt{\dfrac{\left(a+b\right)\left(a+c\right)}{a^2}}+\sqrt{\dfrac{\left(b+c\right)\left(b+a\right)}{b^2}}+\sqrt{\dfrac{\left(c+a\right)\left(c+b\right)}{c^2}}\)
Cho 0<a, b, c<1; ab+bc+ca=1. Tìm GTNN của \(P=\dfrac{a^2.\left(1-2b\right)}{b}+\dfrac{b^2.\left(1-2c\right)}{c}+\dfrac{c^2.\left(1-2a\right)}{a}\)
cho a,b,c>0 và abc=1. Tìm min:
\(Q=\dfrac{a^4}{\left(a^2+b^2\right)\left(a+b\right)}+\dfrac{b^4}{\left(b^2+c^2\right)\left(b+c\right)}+\dfrac{c^4}{\left(c^2+a^2\right)\left(c+a\right)}\)
Cho a,b,c là các số thực dương thỏa mãn a+b+c=3. Tìm giá trị nhỏ nhất của biểu thức:
\(P=\dfrac{1}{a\left(b^2+bc+c^2\right)}+\dfrac{1}{b\left(c^2+ca+a^2\right)}+\dfrac{1}{c\left(a^2+ab+b^2\right)}+\dfrac{abc}{ab+bc+ca}\)
Cho a,b,c≠0 thỏa mãn: (a+b)(b+c)(a+c)=8abc
C/M \(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}=\)\(\dfrac{3}{4}+\dfrac{ab}{\left(a+b\right)\left(b+c\right)}+\dfrac{bc}{\left(b+c\right)\left(a+c\right)}+\)\(\dfrac{ac}{\left(a+c\right)\left(a+b\right)}\)
Cho a,b,c >0 và abc=1. Tìm min:
\(P=\dfrac{a^4+b^4}{\left(a^2+b^2\right)\left(a+b\right)}+\dfrac{b^4+c^4}{\left(b^2+c^2\right)\left(b+c\right)}+\dfrac{a^4+c^4}{\left(a^2+c^2\right)\left(a+c\right)}\)
Cho a, b, c > 0 thoã mãn: ab + bc + ca = 3. CMR: \(\dfrac{1}{1+a^2\left(b+c\right)}+\dfrac{1}{1+b^2\left(c+a\right)}+\dfrac{1}{1+c^2\left(a+b\right)}\le\dfrac{3}{abc}\)
cho a,b,c>0 thỏa mãn \(2\left(b^2+bc+c^2\right)=3\left(3-a^2\right)\). tìm GTNN của biểu thức \(T=a+b+c+\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\)
\(B=\sqrt{\dfrac{\left(c+bc\right)\left(b+ac\right)}{c+ab}}+\sqrt{\dfrac{\left(c+ab\right)\left(b+ac\right)}{a+bc}}+\sqrt{\dfrac{\left(c+ab\right)\left(a+bc\right)}{b+ac}}\)
(a,b,c là số thực dương và a+b+c=1)