Cho a + b + c = 2007 và 1/a + b + 1/b+c + 1/c + a = 1/90
Tính : S = a/b+c + b/c+a + c/a+b
Cho \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}\) và a + b + c = 2007
Tính a ; b ; c
Bài 3
Cho a + b + c = 2007 và 1/ a + b + 1/ b + c + 1/ c + a = 1/ 90. Tính
Tính a,b,c,d sao cho a+b+c+d khác 0 và biết b+c+d/a=c+d+a/b=d+a+b/c=a+b+c/d=K
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\)
Chứng minh rằng \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
bằng 3 các(giả thiết a khác b;c khác d và mỗi số a,b,c,d khác 0)
Cho các số hữu tỉ \(\dfrac{a}{b}\) và \(\dfrac{c}{d}\) với mẫu dương, trong đó \(\dfrac{a}{b}< \dfrac{c}{d}\) . Chứng minh rằng :
\(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)
Cho và
. Giá trị của biểu thức
là
Cho \(\dfrac{a+b+c-d}{d}\)=\(\dfrac{b+c+d-a}{a}\)=\(\dfrac{c+d+a-b}{b}\)=\(\dfrac{d+a+b-c}{c}\), (a+b+c+d) khác 0
tính giá trị của biểu thức: P=(1+\(\dfrac{b+c}{a}\))(1+\(\dfrac{c+d}{b}\))(1+\(\dfrac{d+a}{c}\))(1+\(\dfrac{a+b}{d}\))
Cho bốn số a;b;c;d sao cho a+b+c+d khác 0. Biết \(\dfrac{b+c+d}{a}=\dfrac{c+d+a}{b}=\dfrac{d+a+b}{c}=\dfrac{a+b+c}{d}=k\)
Vậy k =..........