Giả sử ab và (a2+ab+b2) không phải là 2 số nguyên tố cùng nhau
Gọi d là ước chung của ab và (a2+ab+b2)
\(\Rightarrow\left\{{}\begin{matrix}ab⋮d\\a^2+ab+b^2⋮d\end{matrix}\right.\)
Ta có ab⋮d và (a,b)=1 nên ta có 2 trường hợp
TH1:a⋮d\(\Leftrightarrow a^2⋮d\)
Mà ab⋮d và \(a^2+ab+b^2⋮d\)
Suy ra \(b^2⋮d\)\(\Leftrightarrow b⋮d\)(vô lý với (a,b)=1)
TH2:b⋮d\(\Leftrightarrow b^2⋮d\)
Mà ab⋮d và \(a^2+ab+b^2⋮d\)
Suy ra \(a^2⋮d\)\(\Leftrightarrow a⋮d\)(vô lý với (a,b)=1)
Vậy trái với giả sử\(\Rightarrow\)ab và (a2+ab+b2) là 2 số nguyên tố cùng nhau\(\Rightarrow\left(ab,a^2+ab+b^2\right)=1\Rightarrow\dfrac{ab}{a^2+ab+b^2}\) là phân số tối giản