Cho a,b,c là ba số thực dương thỏa mãn \(a+b+c=2\). Yìm GTLN của biểu thức
\(P=\dfrac{ab}{\sqrt{ab+2c}}+\dfrac{bc}{\sqrt{bc+2a}}+\dfrac{ca}{\sqrt{ac+2b}}\)
Cho a,b,c là các số thực dương thỏa a+b+c=3
Chứng minh \(\dfrac{1}{2+a^2b}+\dfrac{1}{2+b^2c}+\dfrac{1}{2+c^2a}\ge1\)
Cho a,b,c là các số thực dương thoả mãn \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\le3\)Chứng minh rằng \(\dfrac{a}{1+b^2}+\dfrac{b}{1+c^2}+\dfrac{c}{1+a^2}+\dfrac{1}{2}\left(ab+bc+ca\right)\ge3\)
cho a,b,c là các số thực dương. Chứng minh rằng :
\(\dfrac{b^2c}{a^3\left(b+c\right)}+\dfrac{c^2a}{b^3\left(c+a\right)}+\dfrac{a^2b}{c^3\left(a+b\right)}\ge\dfrac{1}{2}\left(a+b+c\right)\)
cho a,b,c là các số thực dương thỏa mãn \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=\dfrac{1}{3}\)
chứng minh \(\dfrac{1}{2a^2+b^2}+\dfrac{1}{2b^2+c^2}+\dfrac{1}{2c^2+a^2}\le\dfrac{1}{9}\)
Cho a,b,c là các số thực dương sao cho ab+bc+ac=3abc. C/m: \(\frac{1}{2a^2+b^2}+\frac{1}{2b^2+c^2}+\frac{1}{2c^2+a^2}\le1\)
1.Cho a,b,c ∈ℝ+ và abc = 1 Chứng minh rằng:
\(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}\ge\dfrac{3}{2}\)
2: Cho a, b ,c là các số thực dương thỏa mãn abc = ab + bc + ca.
Chứng minh :\(\dfrac{1}{a+2b+3c}+\dfrac{1}{2a+3b+c}+\dfrac{1}{3a+b+2c}< \dfrac{3}{16}\)
(trích đề TS vào lớp 10 chuyên Toán Đại học Vinh 2002 – 2003)
Bài 3: Cho x,y là các số thực dương thỏa mãn x + y = 1.
Tìm GTNN của biểu thức A = \(\dfrac{1}{x^3+xy+y^3}+\dfrac{4x^2y^2+2}{xy}\)
4: Cho a, b, c là những số thực dương thỏa mãn a + b + c = \(\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\)
Chứng minh rằng: \(ab+bc+ca\le3\)
Cho 3 số dương a,b,c thỏa mãn abc = 1. Tìm GTLN của biểu thức
\(P=\dfrac{1}{a^2+2b^2+3}+\dfrac{1}{b^2+2c^2+3}+\dfrac{1}{c^2+2a^2+3}\)
Cho a, b, c là các số dương thỏa mãn: \(a^2+2b^2\le3c^2\). Chứng minh: \(\dfrac{1}{a}+\dfrac{2}{b}\ge\dfrac{3}{c}\)