\(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\)
Do 2 vế không âm nên ta bình phương
\(\left(\sqrt{a}+\sqrt{b}\right)^2\ge\left(\sqrt{a+b}\right)^2\)
\(\Leftrightarrow a+2\sqrt{ab}+b\ge a+b\)
\(\Leftrightarrow2\sqrt{ab}\ge0\) ( luôn đúng )
Xảy ra khi \(\left\{{}\begin{matrix}ab\ge0\\\left|a\right|\ge\left|b\right|\end{matrix}\right.\)
đặt A=\(\sqrt{a+b}\) \(\Rightarrow\) A^2=a+b
B=\(\sqrt{a}\) +\(\sqrt{b}\) \(\Rightarrow\) B^2=a+b<a+b+2\(\sqrt{ab}\)
vì a>0,b>0 =>2\(\sqrt{ab}\) >0
do vậy a+b <a+b+2\(\sqrt{ab}\)
=>A^2<B^2 =>A<B