Áp dụng BĐT Cô - si ta có :
\(\frac{a^3}{\left(b+1\right)^2}+\frac{b+1}{8}+\frac{b+1}{8}\ge3\sqrt[3]{\frac{a^3}{64}}=\frac{3a}{4}\)
\(\frac{b^3}{\left(a+1\right)^2}+\frac{a+1}{8}+\frac{a+1}{8}\ge3\sqrt[3]{\frac{b^3}{64}}=\frac{3b}{4}\)
\(\Rightarrow P=\frac{a^3}{\left(b+1\right)^2}+\frac{b^3}{\left(a+1\right)^2}\ge\frac{3}{4}\left(a+b\right)-\frac{2\left(a+b\right)+4}{8}\ge\frac{6}{4}-1=\frac{1}{2}\)
Vậy GTNN của P là \(\frac{1}{2}\) . Dấu bằng xảy ra khi \(a=b=1\)