\(P\le\sqrt{2\left(ab+a+ab+b\right)}=\sqrt{2\left(2ab+a+b\right)}\)
\(P\le\sqrt{4ab+2\left(a+b\right)}\le\sqrt{\left(a+b\right)^2+2\left(a+b\right)}\le\sqrt{4+4}=2\sqrt{2}\)
\(P_{max}=2\sqrt{2}\) khi \(a=b=1\)
\(P\le\sqrt{2\left(ab+a+ab+b\right)}=\sqrt{2\left(2ab+a+b\right)}\)
\(P\le\sqrt{4ab+2\left(a+b\right)}\le\sqrt{\left(a+b\right)^2+2\left(a+b\right)}\le\sqrt{4+4}=2\sqrt{2}\)
\(P_{max}=2\sqrt{2}\) khi \(a=b=1\)
Cho a,b,c là các số thực dương thỏa mãn điều kiện a + b + c = 3
Tìm GTLN của biểu thức \(P=\dfrac{bc}{\sqrt{3a+bc}}+\dfrac{ca}{\sqrt{3b+ca}}+\dfrac{ab}{\sqrt{3c+ab}}\)
Cho a, b, c > 0 thỏa mãn : \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=1\). Tìm GTNN của biểu thức:
\(A=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\)
1) Cho a,b,c > 0 ; a+b+c = 1 .Tìm GTLN của :
A = \(\dfrac{\sqrt{ab}}{\sqrt{c+ab}}+\dfrac{\sqrt{bc}}{\sqrt{a+bc}}+\dfrac{\sqrt{ac}}{\sqrt{b+ac}}\)
Cho a<0, b<0. Rút gọn biểu thức K= \(9\sqrt{ab}-6b\sqrt{\dfrac{a}{b}}+\dfrac{1}{b}\sqrt{9ab^3}\)
Bài 1: Cho a,b>0; \(a^2+b^2\le16.\)Tìm GTLN của M= \(a\sqrt{9b\left(a+8b\right)}+b\sqrt{9a\left(b+8a\right)}\)
Bài 2: Cho a,b,c >\(\dfrac{25}{4}\). Tìm GTNN của P=\(\dfrac{a}{2\sqrt{b}-5}+\dfrac{b}{2\sqrt{c}-5}+\dfrac{c}{2\sqrt{a}-5}\)
Bài 3: Cho a,b,b >0 và ab+bc+ca =1. Chứng minh:
\(\sqrt{a^2+1}+\sqrt{b^2+1}+\sqrt{c^2+1}\le2\left(a+b+c\right)\)
Bài 4: Cho 2 số thực a,b thay đổi, thỏa mãn điều kiện a+b\(\ge1\) và a>0. Tìm GTNN của A= \(\dfrac{8a^2+b}{4a}+b^2\)
Bài 5: Cho x,y thỏa mãn điều kiện \(\sqrt{x+2}-y^3=\sqrt{y+2}-x^3.\) Tìm GTNN của A= \(x^2+2xy-2y^2+2y+10\)
Bài 6: Với mọi a>1, chứng minh:
a+\(\dfrac{1}{a-1}\ge3\)
Cho a>0, b>0 thỏa mãn \(a+b-\sqrt{ab}-4\sqrt{a}-\sqrt{b}+7=0\). Khi đó tổng a + b bằng...
1. Cho biểu thức : A = \(\left(1-\dfrac{\sqrt{x}}{1+\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\).
a) Rút gọn A.
b) Tìm x để A < 0.
2. Cho biểu thức: B = \(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{3+\sqrt{x}}\).
a) Rút gọn B.
b) Tìm x để B = \(\dfrac{1}{2}\)
c) Tìm x để B > 0.
3. a) Tìm GTLN của biểu thức: A = \(\dfrac{1}{x-\sqrt{x}+1}\).
b) Tìm GTNN của biểu thức: B = \(\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\).
Cho các số thực dương a, b, c thỏa mãn a +b +c = 2019. Tìm GTNN của biểu thức Q = \(\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ac+a^2}\)
Mong các bạn giải giúp mình bài này. Cảm ơn nhiều.
cho biểu thức R =\(\dfrac{2\sqrt{a}+3\sqrt{b}}{\sqrt{ab}+2\sqrt{a}-3\sqrt{b}-6}-\dfrac{6-\sqrt{ab}}{\sqrt{ab}+2\sqrt{a}+3\sqrt{b}+6}\)
a)rút gọn biểu thức R
b)Tìm a\(\in\)z để R có giá trị nguyên
c) Chứng minh rằng R=\(\dfrac{b+81}{b-81}\)thì \(\dfrac{b}{a}\) là 1 số nguyên chia hết cho 3