Áp dụng BĐT Cauchy swarchz ta có:
A=\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{a+c}\ge\frac{(a+b+c)^2}{2(a+b+c)}=\frac{a+b+c}{2} \)
Mà \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=1 \)
=>\(A\ge\frac{1}{2} \)
Dấu "=" xảy ra <=>a=b=c=\(\frac{1}{3} \)
Áp dụng BĐT Cauchy swarchz ta có:
A=\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{a+c}\ge\frac{(a+b+c)^2}{2(a+b+c)}=\frac{a+b+c}{2} \)
Mà \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=1 \)
=>\(A\ge\frac{1}{2} \)
Dấu "=" xảy ra <=>a=b=c=\(\frac{1}{3} \)
Cho a + b + c = 1 và a,b,c là các số thực dương. CMR: \(\sqrt{\frac{ab}{c+ab}}+\sqrt{\frac{bc}{a+bc}}+\sqrt{\frac{ca}{b+ca}}\le\frac{3}{2}\)
Caau1: Biết \(y^2+yz+z^2=1-\frac{3x^2}{2}\)Tìm GTLN, GTNN của A=x+y+z
Caau2:Cho x, y, z la các số dương thỏa mãn \(x^2+y^2+z^2\le3\)Tìm GTNN của biểu thức P=\(\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+zx}\)
Caau3: Tìm GTLN của P=\(\frac{ab\sqrt{c-2}+bc\sqrt{a-3}+ca\sqrt{b-4}}{abc}\)
Caau4 TTìm GTNN của M=\(x-2\sqrt{xy}+3y-2\sqrt{x}+1\)
Cho a,b,c > 0 thỏa mãn abc = 1. Chứng minh rằng: \(\frac{\sqrt{a}}{2+b\sqrt{a}}+\frac{\sqrt{b}}{2+c\sqrt{b}}+\frac{\sqrt{c}}{2+a\sqrt{c}}\ge1\)
Câu 1: Cho biểu thức \(P=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}}{x-2\sqrt{x}+1}\) ( với \(x>0,x\ne1\))
a) Rút gọn biểu thức P
b) Tìm các giá trị của x để \(P>\frac{1}{2}\)
Câu 2: Cho biểu thức \(P=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{\sqrt{a}}{a-\sqrt{a}}\right):\frac{\sqrt{a}+1}{a-1}\) ( với \(a>0,a\ne1\) )
a) Rút gọn biểu thức P
b) Tìm các giá trị của a để P < 0
Cho biểu thức: \(A=\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\frac{2a+\sqrt{a}+1}{\sqrt{a}}+1;a>0\)
a) Rút gọn A.
b) Tìm giá trị của a để A=2.
c) Tìm GTNN của A.
AI GIẢI NHANH VỚI Ạ !!!!
Cho biểu thức B= (\(\frac{2+\sqrt{a}}{2-\sqrt{a}}-\frac{2-\sqrt{a}}{2+\sqrt{a}}-\frac{4a}{a-4}\)):(\(\frac{2}{2-\sqrt{a}}-\frac{\sqrt{a}+3}{2\sqrt{a}-a}\))
a) tìm điều kiện xác định
b) rút gọn
c)tìm giá trị cua a để B>0
\(A=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\) Rút gọn và chứng minh \(A\le\frac{2}{3}\)
\(B=\frac{3a+\sqrt{9a}-3}{a+\sqrt{a}-2}-\frac{\sqrt{a}+1}{\sqrt{a}+2}+\frac{\sqrt{a}-2}{1-\sqrt{a}}\) Rút gọn và tìm \(a\in Z\) sao cho \(A\in Z\)
\(C=\left(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right):\left(a-b\right)+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
Chứng minh rằng giá trị của biểu thức C không phụ thuộc vào giá trị của a, b
cho các số thực dương a,b,c thỏa mãn điều kiện \(\left(a+c\right)\left(b+c\right)=4c^2\)
tìm GTNN của biểu thức P=\(\frac{a}{b+3c}+\frac{b}{a+3c}+\frac{ab}{bc+ca}\)
B1: Rút gọn biểu thức sao
P=\(\frac{1}{\sqrt{1}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{5}}+...+\frac{1}{\sqrt{23}+\sqrt{25}}\)
B2: Cho số dương a,b,c thỏa mãn a>b. CMR \(\sqrt{a+c}-\sqrt{a}< \sqrt{b+c}-\sqrt{b}\)