Câu 1: Cho biểu thức \(P=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}}{x-2\sqrt{x}+1}\) ( với \(x>0,x\ne1\))
a) Rút gọn biểu thức P
b) Tìm các giá trị của x để \(P>\frac{1}{2}\)
Câu 2: Cho biểu thức \(P=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{\sqrt{a}}{a-\sqrt{a}}\right):\frac{\sqrt{a}+1}{a-1}\) ( với \(a>0,a\ne1\) )
a) Rút gọn biểu thức P
b) Tìm các giá trị của a để P < 0
b)tìm giá trị nguyên của x để A có giá trị nguyên
Cho biểu thức: \(Q=\frac{a+2\sqrt{a}+1}{a-1}.\left(\frac{1}{\sqrt{a}-1}-\frac{2\sqrt{a}}{a\sqrt{a}-a+\sqrt{a}-1}\right);\)với \(a\ge0;a\ne1\)
a) Rút gọn biểu thức Q.
b) Chứng minh rằng khi a>1 thì giá trị biểu thức Q>1
AI GIẢI VỚI CẦU XIN !!!!!
Cho biểu thức : \(A=\frac{x+1-2\sqrt{x}}{\sqrt{x}-1}+\frac{x+\sqrt{x}}{\sqrt{x}+1}\)
a) Đặt đk để biểu thức A có nghĩa
b) Rút gọn biểu thức A
c) Với giá trị nào của x thì A<-1
Cho biểu thức: P = \(\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
a, Rút gọn P
b, Tìm giá trị của a để \(P>\frac{1}{6}\)
Cho biểu thức: \(Q=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a+2}}{\sqrt{a}-1}\right)\)
a) Tìm Đkxđ rồi rút gọn Q
b) Tìm a để Q dương
c)Tính giá trị của biểu thức biết \(a=9-4\sqrt{5}\)
Cho biểu thức A=\(\frac{2a^2+4}{1-a^2}-\frac{1}{1+\sqrt{a}}-\frac{1}{1-\sqrt{a}}\)
a.Rút gọn biểu thức
b.Tìm giá trị lớn nhất của biểu thức A
1. Cho biểu thức:
A = \(\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1.\)
a) Rút gọn A.
b) Tìm x để A = 2.
c) Tìm GTNN của A.
2. Tìm GTNN của B = \(\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}.\)
1) Cho biểu thức \(A=\frac{\sqrt{x}+1}{x+4 \sqrt{x}+4} :\left(\frac{x}{x+2 \sqrt{x}}+\frac{x}{\sqrt{x}+2}\right)\), với x>0
a) Rút gọn A
b) Tìm tất cả các giá trị của x để \(A \geq \frac{1}{3 \sqrt{x}}\)
2) Cho biểu thức \(P=\left(1-\frac{1}{\sqrt{x}}\right) :\left(\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1-\sqrt{x}}{x+\sqrt{x}}\right)\), với \(x>0\) và \(x \neq 1\)
a) Rút gọn P
b) Tim giá trị của P tại \(x=\sqrt{2022+4 \sqrt{2018}}-\sqrt{2022-4 \sqrt{2018}}\)
3) Cho biểu thức \(P=\left(\frac{x-6}{x+3 \sqrt{x}}-\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{x}+3}\right) : \frac{2 \sqrt{x}-6}{x+1}\), với \(x>0 ; x \neq 9\)
a) Rút gọn P
b) Tìm giá trị của x để P=1