\(Q=\sum\sqrt{\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\frac{1}{2}\sum\left(a+b\right)=a+b+c=2019\)
\(\Rightarrow Q_{min}=2019\) khi \(a=b=c=\frac{2019}{3}\)
\(Q=\sum\sqrt{\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\frac{1}{2}\sum\left(a+b\right)=a+b+c=2019\)
\(\Rightarrow Q_{min}=2019\) khi \(a=b=c=\frac{2019}{3}\)
Cho a, b, c > 0 thỏa mãn : \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=1\). Tìm GTNN của biểu thức:
\(A=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\)
Cho a,b,c là các số thực không âm thỏa mãn \(a^2+b^2+c^2=6\).Tìm giá trị nhỏ nhất:\(P=\sqrt{4-a^2}+\sqrt{4-b^2}+\sqrt{4-c^2}\)
tìm tất cả các số nguyên dương a,b,c là độ dài 3 cạnh của 1 tam giác thỏa mãn
\(\sqrt{\dfrac{19}{a=b-c}}+\sqrt{\dfrac{5}{b+c-a}}+\sqrt{\dfrac{79}{a+c-b}}\in N\ne1\)
CÁC BẠN GIÚP MÌNH NHÉ MÌNH CẦN GẤP!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Cho a,b,c là các số thực dương thỏa mãn a+b+c = 3
Chứng minh rằng với mọi k > 0 ta luôn có\(\Sigma\left(b+c\right)\sqrt[k]{\dfrac{bc+1}{a^2+1}}\ge6\)
Cho a,b,c là các số thực dương thỏa mãn điều kiện a + b + c = 3
Tìm GTLN của biểu thức \(P=\dfrac{bc}{\sqrt{3a+bc}}+\dfrac{ca}{\sqrt{3b+ca}}+\dfrac{ab}{\sqrt{3c+ab}}\)
cho a,b,c là các số dương thỏa mãn: ab + bc + ac=3abc.
Tìm gái trị nhỏ nhất của biểu thức:
K= \(\dfrac{a^2}{c\left(c^2+a^2\right)}+\dfrac{b^2}{a\left(a^2+b^2\right)}+\dfrac{c^2}{b\left(b^2+c^2\right)}\)
Caau1: Biết \(y^2+yz+z^2=1-\frac{3x^2}{2}\)Tìm GTLN, GTNN của A=x+y+z
Caau2:Cho x, y, z la các số dương thỏa mãn \(x^2+y^2+z^2\le3\)Tìm GTNN của biểu thức P=\(\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+zx}\)
Caau3: Tìm GTLN của P=\(\frac{ab\sqrt{c-2}+bc\sqrt{a-3}+ca\sqrt{b-4}}{abc}\)
Caau4 TTìm GTNN của M=\(x-2\sqrt{xy}+3y-2\sqrt{x}+1\)
Cho a + b + c = 1 và a,b,c là các số thực dương. CMR: \(\sqrt{\frac{ab}{c+ab}}+\sqrt{\frac{bc}{a+bc}}+\sqrt{\frac{ca}{b+ca}}\le\frac{3}{2}\)
1/ cho a,b,c thỏa \(ab+bc+ca\ge11\)
c/m \(\sqrt[3]{a^2+3}+\dfrac{7}{5\sqrt[3]{14}}\sqrt[3]{b^2+3}+\dfrac{\sqrt[3]{9}}{5}\sqrt[3]{c^2+3}\ge\dfrac{23}{5\sqrt[3]{2}}\)
2)cho a,b,c dương thỏa a+b+c=3
c/m \(\left(a^3+b^3+c^3\right)\left(a^2-b^2\right)\left(b^2-c^2\right)\left(c^2-a^2\right)\le\dfrac{729\sqrt{3}}{8}\)
p/s: cách của mik đa phần dùng cô-si (I need another way!!)