Áp dụng BĐT AM-GM ta có:
\(VT=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(\ge\left(a+b\right)\left(2\sqrt{a^2b^2}-ab\right)\)
\(=\left(a+b\right)\left(2ab-ab\right)\)
\(=ab\left(a+b\right)=a^2b+ab^2=VP\)
Đẳng thức xảy ra khi \(a=b\)
Áp dụng BĐT AM-GM ta có:
\(VT=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(\ge\left(a+b\right)\left(2\sqrt{a^2b^2}-ab\right)\)
\(=\left(a+b\right)\left(2ab-ab\right)\)
\(=ab\left(a+b\right)=a^2b+ab^2=VP\)
Đẳng thức xảy ra khi \(a=b\)
Bài 1: Cho a, b, c > 0. Chứng minh:
\(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\ge a+b+c\)
Bài 2:
a) Tìm GTLN của A = \(\dfrac{x^2}{x^4+x^2+1}\)
b) Tìm GTLN của B = xy biết 4x + 5y = 40
Bài 3: Cho a, b, c > 0. Chứng minh:
\(\dfrac{-a+b+c}{2a}+\dfrac{a-b+c}{2b}+\dfrac{a+b-c}{2c}\ge\dfrac{3}{2}\)
Bài 4: Cho m, n > 0. Chứng minh:
\(\dfrac{a^2}{m}+\dfrac{b^2}{n}\ge\dfrac{\left(a+b\right)^2}{m+n}\)
Giải giùm mình mấy bài BPT này nha
a) Chứng minh: \(\dfrac{a+b}{2}\le\sqrt{\dfrac{a^2+b^2}{2}}\)
b) Cho a,b>0 chứng minh: \(\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}\ge\sqrt{a}+\sqrt{b}\)
c) Cho a+b\(\ge\)0 chứng minh: \(\dfrac{a+b}{2}\ge\sqrt[3]{\dfrac{a^3+b^3}{2}}\)
d) Chứng minh: \(\dfrac{a+b+c}{3}\ge\sqrt{\dfrac{ab+bc+ac}{3}}\) ; \(a,b,c\ge0\)
e) Chứng minh: \(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)
Cho a,b,c >0 , chứng minh rằng
a) \(\frac{a^3}{b}\ge a^2+ab-b^2\)
b)\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge ab+bc+ca\)
Chứng minh rằng : \(a^5+b^5\ge a^3b^2+a^2b^3\) với \(a,b\ge0\)
Chứng minh rằng :
a) Nếu a ≤ b thì -2a+3 ≥ -2b+3
b) Nếu a > b thì 2a-5 > 2b-5
c) Nếu a > b thì 5a > 5b-1
1, Với mọi a,b,c tùy ý, chứng minh:
a2 + b2 + 1 \(\ge\) ab + a + b
2, Cho x + y + z = 1
Chứng minh: x2 + y2 + z2 \(\ge\dfrac{1}{3}\)
3, Cho 4x + y = 1
Chứng minh: 4x2 + y2 \(\ge\dfrac{1}{3}\)
Cho a;b \(\in R\)
C/m \(2\left(a^4+b^2\right)\ge ab^3+a^3b+2a^2b^2\)
Cho a>b>c>0
Chứng minh a3b2+b3c2+c3a2 ≥ a2b3+b2c3+c2a3
Chứng minh rằng:
a, \(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)
b, \(3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)
c, \(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge a+b+c\)
d, \(a^2+b^2+c^2+d^2\ge ab+ac+ad\)