Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Huỳnh Nhật

Cho a3+b3+c3=3abc với a,b,c khác 0 và a+b+c=0
Tính P=(2019+a/b)(2019+b/c)(2013+c/a)

Akai Haruma
27 tháng 8 2019 lúc 17:20

Lời giải:
\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow (a+b)^3-3ab(a+b)+c^3-3abc=0\)

\(\Leftrightarrow (a+b)^3+c^3-3ab(a+b+c)=0\)

\(\Leftrightarrow (a+b+c)[(a+b)^2-c(a+b)+c^2]-3ab(a+b+c)=0\)

\(\Leftrightarrow (a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0\)

Vì $a+b+c\neq 0$ nên $a^2+b^2+c^2-ab-bc-ac=0$

$\Leftrightarrow 2a^2+2b^2+2c^2-2ab-2bc-2ac=0$

$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$

Vì $(a-b)^2, (b-c)^2, (c-a)^2\geq 0$ với mọi $a,b,c$ nên để tổng của chúng bằng $0$ thì:

$\Rightarrow (a-b)^2=(b-c)^2=(c-a)^2=0$

$\Leftrightarrow a=b=c$

Do đó:

\(P=\left(2019+\frac{a}{b}\right)\left(2019+\frac{b}{c}\right)\left(2019+\frac{c}{a}\right)\)

\(=(2019+1)(2019+1)(2019+1)=2010^3\)

Akai Haruma
29 tháng 8 2019 lúc 11:15

Lời giải:
\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow (a+b)^3-3ab(a+b)+c^3-3abc=0\)

\(\Leftrightarrow (a+b)^3+c^3-3ab(a+b+c)=0\)

\(\Leftrightarrow (a+b+c)[(a+b)^2-c(a+b)+c^2]-3ab(a+b+c)=0\)

\(\Leftrightarrow (a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0\)

Vì $a+b+c\neq 0$ nên $a^2+b^2+c^2-ab-bc-ac=0$

$\Leftrightarrow 2a^2+2b^2+2c^2-2ab-2bc-2ac=0$

$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$

Vì $(a-b)^2, (b-c)^2, (c-a)^2\geq 0$ với mọi $a,b,c$ nên để tổng của chúng bằng $0$ thì:

$\Rightarrow (a-b)^2=(b-c)^2=(c-a)^2=0$

$\Leftrightarrow a=b=c$

Do đó:

\(P=\left(2019+\frac{a}{b}\right)\left(2019+\frac{b}{c}\right)\left(2019+\frac{c}{a}\right)\)

\(=(2019+1)(2019+1)(2019+1)=2010^3\)


Các câu hỏi tương tự
Big City Boy
Xem chi tiết
Annie Scarlet
Xem chi tiết
Nguy?n Qu?c ??c Th?ng
Xem chi tiết
Quoc Nguyen Anh
Xem chi tiết
Hồ Thị Minh Châu
Xem chi tiết
Trịnh Thị Việt Hà
Xem chi tiết
Trần Quý
Xem chi tiết
Phan Mai Hoa
Xem chi tiết
yêu nhất BTS
Xem chi tiết