Bài 2: Nhân đa thức với đa thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Như Quỳnh

cho \(a^2+b^2+c^2+3=2\left(a+b+c\right)\) CMR:a=b=c=1

T.Thùy Ninh
28 tháng 6 2017 lúc 16:11

\(a^2+b^2+c^2+3=2\left(a+b+c\right)\)

\(\Leftrightarrow a^2+b^2+c^2+3=2a+2b+2c\)

\(\Leftrightarrow a^2-2a+1+b^2-2b+1+c^2-2c+1=0\) \(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}a-1=0\\b-1=0\\c-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a=1\\b=1\\c=1\end{matrix}\right.\Rightarrow a=b=c=1\Rightarrowđpcm\)

Bùi Hà Chi
28 tháng 6 2017 lúc 16:13

\(a^2+b^2+c^2+3=2\left(a+b+c\right)\Leftrightarrow a^2+b^2+c^2+3-2\left(a+b+c\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2+3-2a-2b-2c=0\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)

\(\left\{{}\begin{matrix}\left(a-1\right)^2\ge0\\\left(b-1\right)^2\ge0\\\left(c-1\right)^2\ge0\end{matrix}\right.\)\(\Rightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\)

Dấu "=" xảy ra khi \(\left(a-1\right)^2=\left(b-1\right)^2=\left(c-1\right)^2=0\)

<=>a-1=b-1=c-1=0<=>a=b=c=1(đpcm)


Các câu hỏi tương tự
Đàm Tùng Vận
Xem chi tiết
Dương Thị Yến Nhi
Xem chi tiết
Hà Ngọc Linh
Xem chi tiết
Nguyễn Trọng Phúc
Xem chi tiết
Đinh Diệp
Xem chi tiết
Nguyễn Như Quỳnh
Xem chi tiết
Nịna Hatori
Xem chi tiết
Nguyễn Như Quỳnh
Xem chi tiết
Dương Thị Yến Nhi
Xem chi tiết