Lời giải:
Vì $a^2+b^2=1$ nên:
\((a+b)^2-2=(a+b)^2-2(a^2+b^2)=(a^2+2ab+b^2)-2(a^2+b^2)\)
\(=2ab-(a^2+b^2)=-(a^2-2ab+b^2)=-(a-b)^2\leq 0, \forall a,b\in\mathbb{R}\)
\(\Rightarrow (a+b)^2\leq 2\)
Ta có đpcm.
Dấu "=" xảy ra khi \(a=b=\frac{1}{\sqrt{2}}\)