Cho a, b, c là độ dài 3 cạnh của tam giác.
Chứng minh \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\frac{3\left(a-b\right)\left(b-c\right)\left(c-a\right)}{abc}\ge9\)
Cho a, b, c > 0 và a + b + c = 4. Chứng minh b + c ≥ abc
HÃY CHỨNG MINH BẤT ĐẲNG THỨC SAU :
1 ( a+b)^2 > 4ab với mọi a,b
2 cho a<b . cmr : 3-b/2 < 4- a/2
3 a^2 + b^2 + c^2 > ab + bc + ca với mọi a,b,c
4 a ( a-b) + b ( b-c) + c ( c-a) > 0 với mọi a,b,c
5 a^2 + b^2 + c^2 > 1/3 với a+b+c =1
Bài 1: Cho a, b, c > 0. Chứng minh:
\(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\ge a+b+c\)
Bài 2:
a) Tìm GTLN của A = \(\dfrac{x^2}{x^4+x^2+1}\)
b) Tìm GTLN của B = xy biết 4x + 5y = 40
Bài 3: Cho a, b, c > 0. Chứng minh:
\(\dfrac{-a+b+c}{2a}+\dfrac{a-b+c}{2b}+\dfrac{a+b-c}{2c}\ge\dfrac{3}{2}\)
Bài 4: Cho m, n > 0. Chứng minh:
\(\dfrac{a^2}{m}+\dfrac{b^2}{n}\ge\dfrac{\left(a+b\right)^2}{m+n}\)
cho a,b,c là 3 số dương thỏa mãn abc=1 chứng minh rằng
\(\frac{1}{a^3\left(b+c\right)}\)+\(\frac{1}{b^3\left(c+a\right)}\)+\(\frac{1}{c^3\left(a+b\right)}\)≥\(\frac{3}{2}\)
Cho a, b, c, d > 0. CMR:
Nếu \(\dfrac{a}{b}< 1\) thì \(\dfrac{a}{b}< \dfrac{a+c}{b+c}\)
Áp dụng, chứng minh BĐT sau:
a) \(1< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< 2\)
b) \(1< \dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}< 2\)
c) \(2< \dfrac{a+b}{a+b+c}+\dfrac{b+c}{b+c+d}+\dfrac{c+d}{c+d+a}+\dfrac{d+a}{d+a+b}< 3\)
1, a^2+b^2+c^2 >= ab + bc + ca 2, ( a+b+c)*(1/a + 1/b + 1/c) >= 9 3, a/b +b/c + c/a >= 0 a,b,c>0
Cho a, b, c là 3 số dương. Chứng minh:
(a+b+c) (1/a+1/b+1/c) >=9
Không dùng các BĐT cơ bản
a) Cho a,b,c > 0 ; abc = 1 ; \(a+b+c\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
CMR : (a-1)(b-1)(c-1) \(\ge0\)
b) Trong 3 số a,b,c có 1 số lớn hơn 1 , 2 số còn lại nhỏ hơn 1