https://hoc24.vn/images/avt/avt2986041_60by60.jpg
\(C=\frac{6\left(\sqrt{a}+3\right)+a-6\sqrt{a}+9}{\sqrt{a}+3}=6+\frac{\left(\sqrt{a}-3\right)^2}{\sqrt{a}+3}\ge6\)
\(C_{min}=6\) khi \(a=9\)
https://hoc24.vn/images/avt/avt2986041_60by60.jpg
\(C=\frac{6\left(\sqrt{a}+3\right)+a-6\sqrt{a}+9}{\sqrt{a}+3}=6+\frac{\left(\sqrt{a}-3\right)^2}{\sqrt{a}+3}\ge6\)
\(C_{min}=6\) khi \(a=9\)
cho a,b,c≥0 và a+b+c=3. tìm GTLN và GTNN của biểu thức \(K=\sqrt{3a+1}+\sqrt{3b+1}+\sqrt{3c+1}\)
Cho biểu thức: \(A=\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right).\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\right]\) \(:\frac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\) \(\left(x>0,y>0\right)\)
a, Rút gọn A
b,Biết \(xy=16\) . Tìm các giá trị của xy để A có GTNN. Tìm GTNN đó.
Cho các số dương a,b,c. Tìm GTNN của biểu thức:
\(M=\frac{1}{a+\sqrt{ab}+\sqrt[3]{abc}}-\frac{3}{\sqrt{a+b+c}}+2017\)
Bài 1: Cho biểu thức : P = \(\frac{\sqrt{x}}{\sqrt{x}+2}+\frac{-x+x\sqrt{x}+6}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
a) Rút gọn P
b) Cho biểu thức \(Q=\frac{\left(x+27\right)P}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\), với x ≥ 0, x ≠ 1, x ≠ 4
Bài 2: Cho biểu thức \(A=\frac{\sqrt{x}+1}{x\sqrt{x}+x+\sqrt{x}}:\frac{-1}{-x^2+\sqrt{x}}\); \(B=x^4-5x^2-8x+2025\). Vs x > 0, x ≠ 1
a) Rút gọn A
b) Tìm giá trị của x để biểu thức T = B - 2A2 đạt GTNN
Bài 3: Cho biểu thức: \(P=\frac{2\sqrt{x}-1}{\sqrt{x}-1}-\frac{2\sqrt{x}+1}{\sqrt{x}+1}\) vs x ≥ 0, x ≠ 1
a) Rút gọn P
b) Tìm giá trị của x để P = \(\frac{3}{4}\)
c) Tìm GTNN của biểu thức A = \(\left(\sqrt{x}-4\right)\left(x-1\right).P\)
Bài 4: Cho biểu thức: \(A=\left(\frac{x+\sqrt{x}+1}{x+\sqrt{x}-2}-\frac{1}{1-\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right):\frac{1}{x-1}\); vs x ≥ 0, x ≠ 1
a) Rút gọn A
b) Tìm x để \(\frac{1}{A}\) là 1 số tự nhiên
Cho bt A = \(\frac{\sqrt{x}-1}{\sqrt{x}+1}\). tìm GTNN của biểu thức: Q = \(\frac{A}{-x+3\sqrt{x}-2}\) với 0 =<x<4
Cho biểu thức : \(P=\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\frac{2a+\sqrt{a}}{\sqrt{a}}+1\left(a>0\right)\)
a, Rút gọn biểu thức P
b, Tìm giá trị của a để P = 2
c, Tìm GTNN của P
d, Với P > 0. So sánh P với \(\sqrt{P}\)
Cho biểu thức: \(P=\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\frac{2a+\sqrt{a}}{\sqrt{a}}+1\) , với a > 0.
a, Rút gọn P
b, Tìm các giá trị của a để P = 2.
c, Tìm GTNN của P.
cho biểu thức
\(A=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
a) Tìm ĐKXĐ và rút gon A
b) chứng minh \(A\le\frac{2}{3}\)
c) Tìm GTNN của biểu thức A
Cho các số x>0, y>0. Tìm GTNN của biểu thức A=\(\frac{x^2+y^2}{xy}+\frac{\sqrt{xy}}{x+y}\)