§1. Bất đẳng thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vo Thi Minh Dao

cho a>0 biểu thức P=\(\dfrac{7\left(a^2+9\right)}{a}+\dfrac{a}{a^2+9}\)  đạt giá trị nhỏ nhất

Trần Minh Hoàng
19 tháng 12 2020 lúc 18:47

Đặt \(t=\dfrac{a^2+9}{a}\ge6\).

Ta có: \(P=7t+\dfrac{1}{t}=\left(7t+\dfrac{252}{t}\right)-\dfrac{251}{t}\ge_{AM-GM}2\sqrt{7.252}-\dfrac{251}{6}=84-\dfrac{251}{6}=\dfrac{253}{6}\).

Đẳng thức xảy ra khi và chỉ khi t = 6 \(\Leftrightarrow\dfrac{a^2+9}{a}=6\Leftrightarrow\left(a-3\right)^2=0\Leftrightarrow a=3\).

Vậy..

Nguyễn Việt Lâm
19 tháng 12 2020 lúc 18:46

\(P=\dfrac{a^2+9}{36a}+\dfrac{a}{a^2+9}+\dfrac{251}{36}\left(\dfrac{a^2+9}{a}\right)\)

\(P\ge2\sqrt{\dfrac{\left(a^2+9\right).a}{36a\left(a^2+9\right)}}+\dfrac{251}{36}.\dfrac{2\sqrt{9a^2}}{a}=\dfrac{253}{6}\)

Dấu "=" xảy ra khi \(a=3\)


Các câu hỏi tương tự
Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Phong Trần
Xem chi tiết
Đỗ Thị Hằng
Xem chi tiết
L N T 39
Xem chi tiết
Hồ Thị Hồng Nghi
Xem chi tiết
Hiển Lê Quang
Xem chi tiết
Phạm Mỹ Châu
Xem chi tiết
Phụng Nguyễn Thị
Xem chi tiết