Bạn xem lại đề.
Biểu thức không có GTNN nhé.
Bạn xem lại đề.
Biểu thức không có GTNN nhé.
cho a,b>0 và \(a+b\le1\).tìm GTNN của \(P=a^2+b^2+\frac{1}{a^2}+\frac{1}{b^2}\)
1 . Cho a,b,c > 0 chứng minh rằng : \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{a+b}{b+c}+\frac{b+c}{a+b}+1\)
2 . Cho x , y , z > 0 thỏa mãn : \(x+y+z=2\)
Tìm GTNN của \(P=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
3 . Cho các sô dương a , b , c biết \(\frac{a}{1+a}+\frac{b}{1+b}+\frac{c}{1+c}\le1\)
4 . Tim giá trị nhỏ nhất của biểu thức : \(P=a^2+b^2+c^2+\frac{ab+bc+ca}{a^2b+b^2c+c^2a}\)
Cho 2 số thực dương a,b thỏa mãn \(0< a,b\le1\) và \(a+b=4ab\).Tìm giá trị nhỏ nhất của biểu thức \(P=a^2b+ab^2-\frac{a^2+b^2}{6a^2b^2}\)
C ho a,b >0 ; a+b=1
Tìm GTNN: P=\(\dfrac{1}{a^2+b^2}+\dfrac{1}{ab}+4ab\)
Cho 3 số a,b,c dương thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le1\)
Tìm GTNN của \(A=\frac{1}{4a+b+c}+\frac{1}{a+4b+c}+\frac{1}{a+b+4c}\)
Ôn tập Bất đẳng thức
1 , Cho a,b,c<3 thỏa mãn abc(a+b+c)=3 . Tìm GTNN của C= \(\frac{a}{\sqrt{9-b^2}}+\frac{b}{\sqrt{9-c^2}}+\frac{c}{\sqrt{9-a^2}}\)
2, Cho a,b,c>0 thỏa mãn \(a^2+b^2+c^2=3\)
Chứng minh a, \(\frac{1}{4-\sqrt{ab}}+\frac{1}{4-\sqrt{bc}}+\frac{1}{4-\sqrt{ca}}\le1\)
b, \(\frac{2a^2}{a+b^2}+\frac{2b^2}{b+c^2}+\frac{2c^2}{c+a^2}\ge a+b+c\)
3, Cho a,b,c >0 và \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=1\)
Tính GTLN của P= \(\frac{1}{\sqrt{5a^2+2ab+2b^2}}+\frac{1}{\sqrt{5b^2+2bc+2c^2}}+\frac{1}{\sqrt{5c^2+2ca+2a^2}}\)
4 , Cho a,b,c>0 và \(ab+bc+ca\ge a+b+c\)
Chứng minh \(\frac{a^2}{\sqrt{a^3+8}}+\frac{b^2}{\sqrt{b^3+8}}+\frac{c^2}{\sqrt{c^3+8}}\ge1\)
Cho a,b,c>0 thỏa mãn a+b+c=3.Tìm GTNN của
P=\(\frac{a+1}{1+b^2}+\frac{b+1}{1+c^2}+\frac{c+1}{1+a^2}\)
Cho biểu thức
\(P=\frac{\left(\frac{a}{b}+\frac{b}{a}+1\right)\left(\frac{1}{a}-\frac{1}{b}\right)^2}{\frac{a^2}{b^2}+\frac{b^2}{a^2}-\left(\frac{a}{b}+\frac{b}{a}\right)}\)(với a>0,b>0 và a khác b
1, CM \(P=\frac{1}{ab}\)
2, Giả sử a,b thay đổi sao cho \(4a+b+\sqrt{ab}=1\). Tìm GTNN của P
Cho a > 0, b > 0 và \(a+b\le1\). Tìm giá trị nhỏ nhất của biểu thức: \(S=\frac{a}{1+b}+\frac{b}{1+a}+\frac{1}{a+b}\)