Cho 0<a, b, c<1; ab+bc+ca=1. Tìm GTNN của \(P=\dfrac{a^2.\left(1-2b\right)}{b}+\dfrac{b^2.\left(1-2c\right)}{c}+\dfrac{c^2.\left(1-2a\right)}{a}\)
cho a,b>0 và \(a^3+b^3+6ab\le8\). tìm GTNN của \(P=\dfrac{1}{a^2+b^2}+\dfrac{3}{ab}+ab\)
cho \(\left(a+b-c\right)^2=ab\) và a,b,c>0 tìm GTNN của \(P=\dfrac{c^2}{a+b-c}+\dfrac{c^2}{a^2+b^2}+\dfrac{\sqrt{ab}}{a+b}\)
cho a,b,c > 0 thỏa mãn a + b + c = 1. Tìm GTNN của
\(P=\dfrac{a}{\sqrt{a^2+8bc}}+\dfrac{b}{\sqrt{b^2+8ac}}+\dfrac{c}{\sqrt{c^2+8ab}}\)
Cho a,b dương: a;b>0, a+b<=1
Tính GTNN:\(S=\dfrac{1}{a^3+b^3}+\dfrac{1}{a^2b}+\dfrac{1}{ab^2}\)
cho a,b,c không âm thỏa mãn a + b + c = 2. Tìm GTNN của :
\(P=\sqrt{a^2+b^2+c^2}+\dfrac{ab+bc+ca}{2}+\dfrac{1}{a^2+b^2+c^2}\)
cho a,b,c không âm thỏa mãn a+b+c=3. tìm GTNN của \(P=\sqrt{a^2+b^2+c^2}+\dfrac{ab+bc+ca}{2}+\dfrac{1}{a^2+b^2++c^2}\)
Cho a,b,c \(\in\) R; 0 < a,b,c < 1 và ab + bc + ca = 1
Tìm GTNN: \(A=\dfrac{a^2\left(1-2b\right)}{b}+\dfrac{b^2\left(1-2c\right)}{c}+\dfrac{c^2\left(1-2a\right)}{a}\)
Cho 2 số thực dương a,b. Tìm GTNN của:
\(A=\dfrac{1}{a^2+b^2}+\dfrac{1}{ab}\)