\(ab+bc+ca=abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z=1\)
\(P=\sum\frac{yz}{x+1}=\sum\frac{yz}{x+x+y+z}=\sum\frac{yz}{x+y+x+z}\le\frac{1}{4}\sum\left(\frac{yz}{x+y}+\frac{yz}{x+z}\right)\)
\(P\le\frac{1}{4}\left(x+y+z\right)=\frac{1}{4}\)
\(P_{max}=\frac{1}{4}\) khi \(x=y=z=\frac{1}{3}\) hay \(a=b=c=3\)