cho a, b, c là các số thực dương thỏa mãn: ab + bc + ca = 1. Chứng minh\(a\sqrt{b^2+1}+b\sqrt{c^2+1}+c\sqrt{a^2+1}\ge2\)
cho 3 số dương a,b,c thỏa mãn \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\le3\) . Cmr
\(\dfrac{a}{1+a^2}+\dfrac{b}{1+b^2}+\dfrac{c}{1+c^2}+\dfrac{ab+ac+bc}{2}\ge3\)
cho các số thực dương thỏa mãn \(a+b+c\le\dfrac{3}{2}\)
tìm min \(B=\left(3+\dfrac{1}{a}+\dfrac{1}{b}\right)\left(3+\dfrac{1}{b}+\dfrac{1}{c}\right)\left(3+\dfrac{1}{c}+\dfrac{1}{a}\right)\)
Cho 2 số nguyên dương m,n thỏa mãn `sqrt(11)-m/n>0`
`CM:\sqrt{11}-m/n>=(3(\sqrt{11}-3))/(mn)`
cho a,b,c>0 thỏa \(a^2+b^2+c^2=\dfrac{5}{3}\)
cm:\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}< \dfrac{1}{abc}\)
cho a,b,c>0 thỏa \(a^2+b^2+c^2=\dfrac{5}{3}\)
cm:\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}< \dfrac{1}{abc}\)
Cho a,b,c là ba số dương thỏa mãn ab+bc+ca=1
Tính tổng:S=\(a.\sqrt{\dfrac{\left(1+b^2\right)\left(1+c^2\right)}{1+a^2}}+b.\sqrt{\dfrac{\left(1+c^2\right)\left(1+a^2\right)}{1+b^2}}+c.\sqrt{\dfrac{\left(1+a^2\right)\left(1+b^2\right)}{1+c^2}}\)
Cho a,b,c >0 thỏa mãn \(6a+\sqrt{3}b+\sqrt[3]{2}c=3\)
Tính Min M = \(\frac{1}{a}+\frac{1}{b^2}+\frac{1}{c^3}\)
cho a,b,c là các số thực dương thỏa mãn abc=1.CMR
\(\left(a-1+\dfrac{1}{b}\right)\left(b-1+\dfrac{1}{c}\right)\left(c-1+\dfrac{1}{a}\right)\le1\)