Áp dụng BĐT :
( x + y + z) \(\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\) ≥ 9 ( x , y , z dương )
Trong đó : x = b + c ; y = a + c ; z = a + b
⇒ ( b + c + a + c + a + b)\(\left(\dfrac{1}{b+c}+\dfrac{1}{a+c}+\dfrac{1}{a+b}\right)\) ≥ 9 ( a > 0 ; b > 0 ; c > 0 )
⇔ 2( a + b + c)\(\left(\dfrac{1}{b+c}+\dfrac{1}{a+c}+\dfrac{1}{a+b}\right)\) ≥ 9
⇔\(\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{a+c}+\dfrac{a+b+c}{a+b}\) ≥ 4,5
⇔ 1 + \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+1+\dfrac{c}{a+b}+1\) ≥ 4,5
⇔\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\) ≥ 1,5
⇒ Amin = 1,5 ⇔ a = b = c