Đặt $(\sqrt{a}, \sqrt{b}, \sqrt{c})=(x,y,z)$ thì bài toán trở thành:
Cho $x,y,z$ không âm thỏa mãn: $x^2+y^2+z^2=x+y+z=2$
Chứng minh rằng:
\(\frac{x}{x^2+1}+\frac{y}{y^2+1}+\frac{z}{z^2+1}=\frac{2}{\sqrt{(x^2+1)(y^2+1)(z^2+1)}}\)
------------------------------------
Lời giải:
$xy+yz+xz=\frac{(x+y+z)^2-(x^2+y^2+z^2)}{2}=\frac{2^2-2}{2}=1$. Do đó:
$\text{VT}=\frac{x}{x^2+xy+yz+xz}+\frac{y}{y^2+xy+yz+xz}+\frac{z}{z^2+xy+yz+xz}=\frac{x}{(x+y)(x+z)}+\frac{y}{(y+z)(y+x)}+\frac{z}{(z+x)(z+y)}$
$=\frac{x(y+z)+y(x+z)+z(x+y)}{(x+y)(y+z)(x+z)}=\frac{2(xy+yz+xz)}{(x+y)(y+z)(x+z)}=\frac{2}{(x+y)(y+z)(x+z)}$
$\text{VP}=\frac{2}{\sqrt{(x^2+xy+yz+xz)(y^2+xy+yz+xz)(z^2+xy+yz+xz)}}$
$=\frac{2}{\sqrt{(x+y)(x+z)(y+z)(y+x)(z+x)(z+y)}}=\frac{2}{(x+y)(y+z)(x+z)}$
Do đó: $\text{VT}=\text{VP}$ (đpcm)
Đặt $(\sqrt{a}, \sqrt{b}, \sqrt{c})=(x,y,z)$ thì bài toán trở thành:
Cho $x,y,z$ không âm thỏa mãn: $x^2+y^2+z^2=x+y+z=2$
Chứng minh rằng:
\(\frac{x}{x^2+1}+\frac{y}{y^2+1}+\frac{z}{z^2+1}=\frac{2}{\sqrt{(x^2+1)(y^2+1)(z^2+1)}}\)
------------------------------------
Lời giải:
$xy+yz+xz=\frac{(x+y+z)^2-(x^2+y^2+z^2)}{2}=\frac{2^2-2}{2}=1$. Do đó:
$\text{VT}=\frac{x}{x^2+xy+yz+xz}+\frac{y}{y^2+xy+yz+xz}+\frac{z}{z^2+xy+yz+xz}=\frac{x}{(x+y)(x+z)}+\frac{y}{(y+z)(y+x)}+\frac{z}{(z+x)(z+y)}$
$=\frac{x(y+z)+y(x+z)+z(x+y)}{(x+y)(y+z)(x+z)}=\frac{2(xy+yz+xz)}{(x+y)(y+z)(x+z)}=\frac{2}{(x+y)(y+z)(x+z)}$
$\text{VP}=\frac{2}{\sqrt{(x^2+xy+yz+xz)(y^2+xy+yz+xz)(z^2+xy+yz+xz)}}$
$=\frac{2}{\sqrt{(x+y)(x+z)(y+z)(y+x)(z+x)(z+y)}}=\frac{2}{(x+y)(y+z)(x+z)}$
Do đó: $\text{VT}=\text{VP}$ (đpcm)