Cho các số dương a, b, c thỏa mãn ab+bc+ca=1.
CMR: \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge3+\sqrt{\frac{\left(a+b\right)\left(a+c\right)}{a^2}}+\sqrt{\frac{\left(b+c\right)\left(b+a\right)}{b^2}}+\sqrt{\frac{\left(c+a\right)\left(c+b\right)}{c^2}}\)
Cho a, b, c > 0 thoả mãn: a + b + c = \(\sqrt{a}+\sqrt{b}+\sqrt{c}\) = 2. Chứng minh: \(\frac{\sqrt{a}}{a+1}+\frac{\sqrt{b}}{b+1}+\frac{\sqrt{c}}{c+1}=\frac{2}{\sqrt{\left(1+a\right)\left(1+b\left(1+c\right)\right)}}\)
Cho a, b, c > 0 thoả mãn a + b + c = \(\sqrt{a}+\sqrt{b}+\sqrt{c}\) = 2. Chứng minh: \(\frac{\sqrt{a}}{a+1}+\frac{\sqrt{b}}{b+1}+\frac{\sqrt{c}}{c+1}=\frac{2}{\sqrt{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\)
Cho a,b,c>0 thỏa mãn: a.b.c=8
Chứng minh: \(\frac{a^2}{\sqrt{\left(1+a^3\right).\left(1+b^3\right)}}+\frac{b^2}{\sqrt{\left(1+b^3\right).\left(1+c^3\right)}}+\frac{c^2}{\sqrt{\left(1+c^3\right).\left(1+a^3\right)}}\ge\frac{4}{3}\)
1/ a/ cho A= \(\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}}-\frac{\sqrt{x}-1}{x+\sqrt{x}}\right)\)
Tính A khi \(x=\frac{2}{2+\sqrt{3}}\)
b/ cho a,b,c là các số thức khác 0 thỏa mãn a+b+c=0 .cmr : \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\)
2/
a/ tìm tất cả các số tự nhiên sao cho \(n^2-14n-256\) là 1 số chính phương
b/ cho a>0 ,b>0 và ab=1. tìm GTNN của biểu thức : A =\(\left(a+b+1\right)\left(a^2+b^2\right)+\frac{4}{a+b}\)
Cho a b c là các số thực dương thỏa mãn \(\left\{{}\begin{matrix}a+b+c=5\\\sqrt{a}+\sqrt{b}+\sqrt{c}=3\end{matrix}\right.\)
CMR :\(\frac{\sqrt{a}}{a+2}+\frac{\sqrt{b}}{b+2}+\frac{\sqrt{c}}{c+2}=\frac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)
Cho a,b,c là các số thực dương thỏa mãn a+b+c=1. Tìm GTNN của biểu thức
\(Q=\frac{\left(1-c\right)^2}{\sqrt{2\left(b+c\right)^2+bc}}+\frac{\left(1-a\right)^2}{\sqrt{2\left(c+a\right)^2+ca}}+\frac{\left(1-b\right)^2}{\sqrt{2\left(a+b\right)^2+ab}}\)
cho a,b,c là các số thực dương thỏa ab+bc+ca=1.cmr
\(\left(1-a^2\right)\sqrt{\frac{\left(1+b^2\right)\left(1+c^2\right)}{1+a^2}}+\left(1-b^2\right)\sqrt{\frac{\left(1+a^2\right)\left(1+c^2\right)}{1+b^2}}=2c\left(1+ab\right)\)
cho a,b,c>0 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le16\left(a+b+c\right)\). Chứng minh rằng:
\(\frac{1}{\left(a+b+2\sqrt{a+c}\right)^3}+\frac{1}{\left(b+c+2\sqrt{b+a}\right)^3}+\frac{1}{\left(c+a+2\sqrt{b+c}\right)^3}\le\frac{8}{9}\)