Bài 17: Cho a, b, c là 3 số thực khác 0, thỏa mãn điều kiện : \(a+b\ne-c\) và \(\dfrac{a+b-c}{c}\)=\(\dfrac{b+c-a}{a}\)=\(\dfrac{c+a-b}{b}\). Tính giá trị biểu thức P=\(\left(1+\dfrac{b}{a}\right)\)x\(\left(1+\dfrac{a}{c}\right)\)x\(\left(1+\dfrac{c}{b}\right)\)
So sánh \(\dfrac{2010}{2011}+\dfrac{2011}{2012}+\dfrac{2012}{2013}+\dfrac{671}{670}\) với 4
Giúp vs ạ!!
Cho a,b,c là số thực dương thỏa mãn
\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}\)
Giá trị của biểu thức B=( 1+\(\dfrac{b}{a}\left(1+\dfrac{a}{c}\right)\left(1+\dfrac{c}{b}\right)\)
Cho \(\dfrac{a+b+c-d}{d}\)=\(\dfrac{b+c+d-a}{a}\)=\(\dfrac{c+d+a-b}{b}\)=\(\dfrac{d+a+b-c}{c}\), (a+b+c+d) khác 0
tính giá trị của biểu thức: P=(1+\(\dfrac{b+c}{a}\))(1+\(\dfrac{c+d}{b}\))(1+\(\dfrac{d+a}{c}\))(1+\(\dfrac{a+b}{d}\))
1) Cho 2 số hữu tỉ x, y có tổng bằng 4. Chứng minh rằng x.y ≤ 4
2) Cho 3 số hữu tỉ dương a, b, c thỏa mãn: \(\dfrac{a+b-c}{a}=\dfrac{b+c-a}{b}=\dfrac{c+a-b}{c}\)
Tính giá trị của biểu thức P = \(\dfrac{a^{1008}.b^{1009}.c}{a^{2018}+b^{2018}+c^{2018}}\)
Cho các số a,b,c,d thỏa mãn
\(\dfrac{a}{b+c+d}=\dfrac{b}{c+d+a}=\dfrac{c}{d+a+b}=\dfrac{d}{a+b+c}\)
Tính giá trị biểu thức
P=\(\dfrac{a+b}{c+d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{b+a}+\dfrac{d+a}{b+c}\)
câu 9( 1 điểm): cho các số a,b,c,d thỏa mãn:
\(\dfrac{a}{b+c+d}=\dfrac{b}{c+d+a}=\dfrac{c}{d+a+b}=\dfrac{d}{a+b+c}\)
Tính giá trị biểu thức:\(P=\dfrac{a+b}{c+d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{a+b}+\dfrac{d+a}{b+c}\)
Giả sử a,b,c là các số thỏa mãn a+b+c=259 và \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}=15\). Khi đó giá trị của biểu thức \(Q=\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}=...\)
cho các số a,b,c khác thỏa mãn: \(\dfrac{a-b+c}{2b}=\dfrac{c-a+b}{2a}=\dfrac{a-c+b}{2c}\)
Tính giá trị của biểu thức P = \(\left(1+\dfrac{c}{b}\right).\left(1+\dfrac{b}{a}\right).\left(1+\dfrac{a}{c}\right)\)