Cho \(a,b,c,d\in N\) thỏa mãn \(a>b>c>d\) và \(ac+bd=\left(b+d+a-c\right)\left(b+d-a+c\right)\).
Chứng minh \(ab+cd\) là hợp số
Cho a, b, c, d là các số hữu tỉ khác 0 thỏa mãn: a+b+c+d=0. CMR: \(A=\sqrt{\left(ab-cd\right).\left(bc-da\right).\left(ca-bd\right)}\) là số hữu tỉ
Cho a, b, c, d là các số hữu tỉ khác 0 thỏa mãn: a+b+c+d=0. CMR: \(A=\sqrt{\left(ab-cd\right).\left(bc-da\right).\left(ca-bd\right)}\) là số hữu tỉ
Cho a, b, c là các số hữu tỉ khác 0 thỏa mãn: a+b+c+d=0. CMR: \(A=\sqrt{\left(ab-cd\right).\left(bc-da\right).\left(ca-bd\right)}\) là số hữu tỉ
Cho a, b,, c, d là các số nguyên dương thỏa mãn b( a + c) = ac. Chứng minh rằng: a. b + 2( a + c) luôn là hợp số;
b. c + 2a luôn là hợp số.
Tìm các số nguyên dương a,b,c thỏa mãn 3a² + b² + c² là nghiệm nguyên tố của 27a⁴ + b⁴ + c⁴ +b²c².
cho các số nguyên a,b,c,d khác 0 thỏa mãn ab=cd
cm: \(a^{2014}+b^{2014}+c^{2014}+d^{2014}\) là hợp số
Cho a,b,c,d là các số nguyên thỏa mãn: 3a^5 + 3b^5 − 2c^5 − 7d^5 = 0 . CMR: a+b −4c − 9d ⋮ 5
cho 4 số thực dương a,b,c,d thỏa mãn a+b+c+d=4.CMR:
\(\frac{1}{ab}+\frac{1}{cd}\ge\frac{a^2+b^2+c^2+d^2}{2}\)