Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
ZoZ - Kudo vs Conan - Zo...

Cho a , b , c > 0 . CMR : \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\)

Nhã Doanh
23 tháng 7 2018 lúc 10:26

\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(=1+\dfrac{a}{b}+\dfrac{a}{c}+\dfrac{b}{a}+1+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{c}{b}+1\)

\(=\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)+3\)

Áp dụng BĐT Cô - si cho 2 số không âm:

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)

\(\dfrac{a}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{a}{c}.\dfrac{c}{a}}=2\)

\(\dfrac{b}{c}+\dfrac{c}{b}\ge2\sqrt{\dfrac{b}{c}.\dfrac{c}{b}}=2\)

Suy ra:

\(\dfrac{a}{b}+\dfrac{b}{a}+\dfrac{a}{c}+\dfrac{c}{a}+\dfrac{b}{c}+\dfrac{c}{b}+3\ge2+2+2+3=9\)

Dấu "=" xảy ra khi: a = b = c

Phùng Khánh Linh
23 tháng 7 2018 lúc 10:26

Áp dụng BĐT Cauchy dạng Engel , ta có :

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)\(\dfrac{9}{a+b+c}\)

\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\text{≥}\left(a+b+c\right).\dfrac{9}{a+b+c}\)

\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\text{≥}9\)

\("="\text{⇔}a=b=c\)

EDOGAWA CONAN
23 tháng 7 2018 lúc 10:34

Áp dụng bất đẳng thức Cô - si cho 3 số không âm ta có :

\(a+b+c\ge3\sqrt[3]{abc}=3\)

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}=3\)

Nhân vế theo vế ta có :

\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\)

Dấu " = " xảy ra khi a = b = c .



Các câu hỏi tương tự
Trần Lộc Bách
Xem chi tiết
Hong Ra On
Xem chi tiết
Nguyễn Hoàng Việt
Xem chi tiết
Quốc Bảo
Xem chi tiết
Nguyễn Long Hoàng
Xem chi tiết
ZoZ - Kudo vs Conan - Zo...
Xem chi tiết
Rimuru Tempest
Xem chi tiết
gtrutykyu
Xem chi tiết
michelle holder
Xem chi tiết