Lời giải:
Ta thấy:
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{(a+b)^2}=\frac{a^2+b^2}{a^2b^2}+\frac{1}{(a+b)^2}=\frac{(a+b)^2-2ab}{a^2b^2}+\frac{1}{(a+b)^2}\)
\(=\frac{(a+b)^2}{a^2b^2}-\frac{2}{ab}+\frac{1}{(a+b)^2}\)
\(=\left(\frac{a+b}{ab}\right)^2-2.\frac{a+b}{ab}.\frac{1}{a+b}+(\frac{1}{a+b})^2\)
\(=(\frac{a+b}{ab}-\frac{1}{a+b})^2=\left(\frac{1}{a}+\frac{1}{b}-\frac{1}{a+b}\right)^2\)
\(\Rightarrow \sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{(a+b)^2}}=|\frac{1}{a}+\frac{1}{b}-\frac{1}{a+b}|\)