** Bạn lưu ý lần sau viết đề bằng công thức toán (biểu tượng $\sum$ bên trái màn hình) để đề trông rõ ràng hơn $\Rightarrow$ khả năng được giải đáp cao hơn.
Sửa đề: CMR $\frac{a^3}{b}+\frac{b^3}{a}\geq 2$
Lời giải:
Áp dụng BĐT AM-GM: $\frac{a^3}{b}+\frac{b^3}{a}=\frac{a^4+b^4}{ab}$
$\geq \frac{(a^2+b^2)^2}{2ab}\geq \frac{2ab(a^2+b^2)}{2ab}=a^2+b^2(1)$
Mà:
$a^2+1\geq 2a$
$b^2+1\geq 2b$
$a^2+b^2\geq 2ab$
$\Rightarrow 2(a^2+b^2)+2\geq 2(a+b+ab)=6$
$\Rightarrow a^2+b^2\geq 2(2)$
Từ $(1);(2)$ ta có đpcm.
Cách khác:
Áp dụng BĐT AM-GM:
$\frac{a^3}{b}+b+1\geq 3a$
$\frac{b^3}{a}+a+1\geq 3b$
$\frac{a^3}{b}+\frac{b^3}{a}+ab\geq 3ab$
Cộng theo vế:
$\frac{a^3}{b}+\frac{b^3}{a}+(a+b+ab)+2\geq 3(a+b+ab)$
$\Leftrightarrow 2(\frac{a^3}{b}+\frac{b^3}{a})+3+2\geq 9$
$\Rightarrow \frac{a^3}{b}+\frac{b^3}{a}\geq 2$ (đpcm)
Dấu "=" xảy ra khi $a=b=1$