Áp dụng BĐT cauchy-Schwarz dạng Engel ta thu được:
\(E\ge\frac{\left(a+b\right)^2}{a+b-2}=\frac{t^2}{t-2}\left(t=a+b>2\right)\)
Ta có: \(E\ge\frac{t^2}{t-2}+4\left(t-2\right)-4t+8\ge2\sqrt{\frac{t^2}{t-2}.4\left(t-2\right)}-4t+8\)
\(=4t-4t+8=8\)
Đẳng thức xảy ra khi a = b = 2 (chị tự giải kĩ ra nha)
Áp dụng bđt Cô si ta có:
\(E=\frac{a^2}{b-1}+\frac{b^2}{a-1}\ge2\sqrt{\frac{a^2}{a-1}.\frac{b^2}{b-1}}\)
Mặt khác:\(\frac{a^2}{a-1}=\frac{a^2-4a+4+4a-4}{a-1}=\frac{\left(a-2\right)^2}{a-1}+4\ge4\)
Tương tự: \(\frac{b^2}{b-1}\ge4\).Nhân theo vế suy ra \(E\ge8\)
\("="\Leftrightarrow a=b=2\)