Từ 2 điều trên => D chia hết cho 9 (1)
Có 5 số nguyên mà chỉ có 2 loại số lẻ và chẵn nên theo nguyên lí Đi rich let có ít nhất 3 số cùng lẻ (chẵn)
Nếu cả 5 số đó cùng chẵn hoặc cùng lẻ ta dễ dàng => D chia hết cho 32+ Nếu trong 5 số, có 1 số lẻ, 4 số chẵn, không mất tính tổng quát ta giả sử 4 số đó là a1; a2; a3; a4, dễ dàng => D chia hết cho 32+ Nếu trong 5 số, có 1 số chẵn, 4 số lẻ tương tự như trên cũng => D chia hết cho 32
+ Nếu trong 5 số, có 3 số chẵn, 2 số lẻ ; 3 số chẵn này khi chia cho 4 chỉ có thể dư 0 hoặc 2. Có 3 số mà chỉ có 2 loại số dư nên theo nguyên lí Đi rich let có ít nhất 2 số cùng dư khi chia cho 4, hiệu của chúng chia hết cho 4 cộng với 3 hiệu còn lại chia hết cho 2 tạo bởi 3 số chẵn (trừ trường hợp trên) và 2 số lẻ cũng => D chia hết cho 32+ Xét tương tự với trường hợp trong 5 số có 3 số lẻ, 2 số chẵn
Vậy trong các trường hợp ta luôn được D chia hết cho 32 (2)
Từ (1) và (2), do (9;32)=1 => D chia hết cho 288 (đpcm)