Đại số lớp 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ngô Doãn Anh

Cho 5 số nguyên: a1; a2; a3; a4; a5

CMR: \(D=\left(a_1-a_2\right).\left(a_1-a_3\right).\left(a_1-a_4\right).\left(a_1-a_5\right).\left(a_2-a_3\right).\left(a_2-a_4\right).\left(a_2-a_5\right).\left(a_3-a_4\right).\left(a_3-a_5\right).\left(a_4-a_5\right)⋮288\)

soyeon_Tiểubàng giải
7 tháng 11 2016 lúc 22:27
Xét 4 số: a1; a2; a3; a4; 4 số này khi chia cho 3 chỉ có thể dư 0; 1; 2. Có 4 số mà chỉ có 3 loại số dư nên theo nguyên lí Đi rich let có ít nhất 2 số cùng dư khi chia cho 3, hiệu của chúng chia hết cho 3Tương tự xét 4 số a2; a3; a4; a5 và => 4 số này tạo ra ít nhất 1 hiệu chia hết cho 3

Từ 2 điều trên => D chia hết cho 9 (1)

Có 5 số nguyên mà chỉ có 2 loại số lẻ và chẵn nên theo nguyên lí Đi rich let có ít nhất 3 số cùng lẻ (chẵn)

Nếu cả 5 số đó cùng chẵn hoặc cùng lẻ ta dễ dàng => D chia hết cho 32+ Nếu trong 5 số, có 1 số lẻ, 4 số chẵn, không mất tính tổng quát ta giả sử 4 số đó là a1; a2; a3; a4, dễ dàng => D chia hết cho 32

+ Nếu trong 5 số, có 1 số chẵn, 4 số lẻ tương tự như trên cũng => D chia hết cho 32

+ Nếu trong 5 số, có 3 số chẵn, 2 số lẻ ; 3 số chẵn này khi chia cho 4 chỉ có thể dư 0 hoặc 2. Có 3 số mà chỉ có 2 loại số dư nên theo nguyên lí Đi rich let có ít nhất 2 số cùng dư khi chia cho 4, hiệu của chúng chia hết cho 4 cộng với 3 hiệu còn lại chia hết cho 2 tạo bởi 3 số chẵn (trừ trường hợp trên) và 2 số lẻ cũng => D chia hết cho 32

+ Xét tương tự với trường hợp trong 5 số có 3 số lẻ, 2 số chẵn

Vậy trong các trường hợp ta luôn được D chia hết cho 32 (2)

Từ (1) và (2), do (9;32)=1 => D chia hết cho 288 (đpcm)


Các câu hỏi tương tự
Dạ Hoa
Xem chi tiết
Nguyễn Thị Ngọc Linh
Xem chi tiết
Nguyễn Hà Phương
Xem chi tiết
Phúc Tiên
Xem chi tiết
Nhã Doanh
Xem chi tiết
Thương Thương
Xem chi tiết
Thư Nguyễn Nguyễn
Xem chi tiết
Nguyễn Thu Ngà
Xem chi tiết
Kirigawa Kazuto
Xem chi tiết