Lời giải:
\(4x^2+2y^2+2z^2-4xy-4xz+2yz-6y-10z+34=0\)
\(\Leftrightarrow (4x^2-4xy+y^2)+y^2+2z^2-2z(2x-y)-6y-10z+34=0\)
\(\Leftrightarrow (2x-y)^2-2z(2x-y)+z^2+y^2+z^2-6y-10z+34=0\)
\(\Leftrightarrow (2x-y-z)^2+(y^2-6y+9)+(z^2-10z+25)=0\)
\(\Leftrightarrow (2x-y-z)^2+(y-3)^2+(z-5)^2=0\)
Do \((2x-y-z)^2; (y-3)^2; (z-5)^2\geq 0, \forall x,y,z\), nên để tổng của chúng bẳng $0$ thì:
\((2x-y-z)^2=(y-3)^2=(z-5)^2=0\Rightarrow \left\{\begin{matrix}
y=3\\
z=5\\
x=4\end{matrix}\right.\)
\(\Rightarrow S=(x-4)^{2014}+(y-4)^{2015}+(z-4)^{2016}=0+(-1)^{2015}+1^{2016}=-1+1=0\)