theo t/c dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}=\dfrac{x+y+z}{y+z+x}=1\)
\(\Rightarrow x=y;y=z;z=x\Leftrightarrow x=y=z\)
theo bài ra ta có: \(x^{2017}-y^{2018}=0\)
\(\Rightarrow x^{2018}-x^{2017}=0\)
\(\Leftrightarrow x^{2017}\left(x-1\right)=0\)\(\Leftrightarrow\left\{{}\begin{matrix}x=0\left(loại\right)\\x=1\end{matrix}\right.\)
vậy x = y= z =1