Lời giải:
\((3a+2b)(3a+2c)=16bc\)
\(\Leftrightarrow 9a^2+6a(b+c)=12bc\)
Theo BĐT Cô-si \(4bc\leq (b+c)^2\Rightarrow 9a^2+6a(b+c)\leq 3(b+c)^2\)
\(\Rightarrow 3a^2+2a(b+c)\leq (b+c)^2\)
\(\Leftrightarrow (b+c)^2-3a^2-2a(b+c)\geq 0\)
\(\Leftrightarrow (b+c)^2-9a^2-2a(b+c)+6a^2\geq 0\)
\(\Leftrightarrow (b+c-3a)(b+c+3a)-2a(b+c-3a)\geq 0\)
\(\Leftrightarrow (b+c-3a)(b+c+a)\geq 0\)
Vì $a+b+c>0$ nên \(b+c-3a\geq 0\Rightarrow b+c\geq 3a\) (đpcm)
b) Áp dụng BĐT Cô-si và kết quả phần a:
\(\frac{a}{b+c}+\frac{b+c}{a}=\frac{a}{b+c}+\frac{b+c}{9a}+\frac{8(b+c)}{9a}\)
\(\geq 2\sqrt{\frac{a}{b+c}.\frac{b+c}{9a}}+\frac{8(b+c)}{9a}=\frac{2}{3}+\frac{8(b+c)}{9a}\geq \frac{2}{3}+\frac{8.3a}{9a}=\frac{2}{3}+\frac{8}{3}=\frac{10}{3}\)
Ta có đpcm.